• Title/Summary/Keyword: aromatics

Search Result 162, Processing Time 0.022 seconds

Detection of Aromatic Pollutants by Bacterial Biosensors Bearing Gene Fusions Constructed with the dnaK Promoter of Pseudomonas sp. DJ-12

  • Park, Sang-Ho;Lee, Dong-Hun;Oh, Kye-Heon;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • Gene fusions were constructed by the transcriptional fusion of the dnaK promoter of pseudomonas sp. DJ-12 or E. coli to the lux or luc marker gene. The dnaKp-DJ::luxCDABE bioluminescent fusion in the biosensor using the Pseudomonas sp. DJ-12 dnaK promoter exhibited about 5-fold more extensive response to ethanol than that of dnaKp-EC::luxCDABE. The bioluminescent response of the dnaK-DJ::luc fusion to ethanol was much weaker than those of the other fusions. The biosensor harboring the dnaKp-DJ::luCDABE fusion was examined for its bioluminescence production based on exposure to aromatic compounds, such as biphenyl, 4-chlorobiphenyl (4CB), 4-hydroxybenzoate (4HBA), and catechol. In particular, the bioluminescence produced by the dnaKp-DJ::luxCDABE fusion was most sensitive to 1 mM biphenyl and 4CB when exposed for 80 min, and the responses were also very strong to other aromatics. Therefore, the biosensor bearing the dnaKp-DJ::luxCDABE fusion would appear to be the most useful for the detection of aromatics and other pollutants.

A Study on Correlation of Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (II);Correlation of Chemical Structure and Cetane Number (초음파 개질 경유의 연료특성과 연소특성의 상관성에 관한 연구 (II);화학구조와 세탄가의 상관관계)

  • Lee, Byoung-Oh;Kim, Yong-Kuk;Kwon, Oh-Sung;Choi, Doo-Seuk;Ryu, Jeong-In
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.163-170
    • /
    • 2002
  • The main objective of this study is to investigate the correlation of chemical structure and cetane number of reformed diesel fuels by ultrasonic irradiation. In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic irradiation, $^1H-NMR$ was used. From the study, following conclusive remarks can be made. 1) BI(=Branch Index), aromatics percentages, and $H_{\alpha}(={\alpha}-methyl$ functional group) of the reformed diesel fuels by ultrasonic irradiation decreased more than those of the conventional diesel fuel. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than those of the conventional diesel fuel. 3) Using predicated equation of cetane number caculated from carbon type structure is more reasonable than that caculated from hydrogen type distribution 4) BI, aromatics percentages, and $H_{\alpha}$ on both of conventional fuel and reformed diesel fuels by ultrasonic irradiation are inversely proportional to cetane number on these fuels.

  • PDF

Analysis of VOCs Produced from Incineration of Plastic Wastes Using a Small- Electric Furnace (소형전기로를 이용한 플라스틱류 소각시 발생하는 VOCs 농도분석)

  • Lee Byeong-Kyu;Kim Haengah
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.759-771
    • /
    • 2004
  • This study analyzed concentrations of volatile organic compounds (VOCs) produced from incineration of plastic wastes at $600^{\circ}C$. The plastic wastes used in this study included polyethyleneterephthlate (PETE), high density polyethylene (HOPE), polyvinyl chloride (PVC), low density polyethylene (LOPE), polypropylene (PP), polystyrene (PS) and other. Plastic wastes were heated from room temperature upto $600^{\circ}C$ providing the compressed air inside of a small-scale electric furnace for 90 minutes and then they were oxidized (incinerated) for 60 minutes at $600^{\circ}C$ maintaining the same air supply. VOCs emitted from the incineration process were sampled using an air sampling pump and Tedlar air bags for 150 minutes and then the components and concentrations of the VOCs were analyzed by a GC-MS. The most prominent chemical structure of the VOCs obtained from the incineration process of the HOPE, LOPE and PP, which include ethylene groups in their main chains, was identified as aliphatic hydrocarbons such as 1-hexene. However, aromatics such as benzene were major chemical structure from the incineration of PETE, PVC and PS which include benzene rings in their main chains. This study estimated the total VOC production from the incineration of the plastic wastes based on the real plastic waste production and the emission factors. 64% and 27% of the total VOC emissions consisted of aliphatic hydrocarbons and aromatics, respectively, which have double bonds within their molecular structure and thus a high ground level ozone formation potential.

A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (I) - Relationship between Chemical Structure and Higher Heating Value (초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (I) -화학구조와 발열량과의 상관성)

  • 이병오;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-79
    • /
    • 2002
  • The main objective of this study is to investigate the relationship between chemical structure and higher heating value of reformed diesel fuels by ultrasonic irradiation. In order to analyze the chemical structure changes of the reformed diesel fuels by ultrasonic irradiation, Proton nuclear magnetic resonance spectrometer(1H-NMR) was used and to analyze the effect of higher heating values of these diesel fuels, the bomb calorimeter was used. From the study, following conclusive remarks can be made. 1) The aromatic carbon percentages and higher heating values of the reformed diesel fuels by ultrasonic irradiation increased more than the conventional diesel ones. 2) The aromatics percentages and Branch Index(BI) of the reformed diesel fuels by ultrasonic irradiation decreased more than the conventional diesel ones. 3) The higher heating values on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation is directly proportional to aromatic carbon percentages and inversely proportional to aromatic percentages and BI for these fuels.

Degradation Characteristics of Non-biodegradable Matters using Pre-Coagulation and Fenton Oxidation Process in Livestock Wastewater (전응집 및 Fenton 산화공정을 이용한 축산폐수의 난분해성물질 제거특성에 관한 연구)

  • Cho, Chang-Woo;Kim, Boung-Young;Chae, Soo-Choen;Kim, Sun-Ae;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2006
  • The purpose of this study was done to evaluate degradation characteristics of non-biodegradable organic matters including aromatic compounds in livestock wastewater using CFZ process. The CFZ process is consisted of coagulation/sedimentation, Fenton oxidation and zeolite adsoption process. degradation charateristics of each treatment water including livestock wastewater were analyzed by UV scanning, FT-IR and GC/MS. After coagulation/sedimentation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. As a result of treatment using these processes, NBDCOD removal efficiency was over 90%. Increase of $E_2/E_3$ ratio (absorbance at 250 and 365 nm) in each treatment water means that aromaticity of livestock wastewater decreased. In case of GC/MS, most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater almost wasn't detected after oxidation using OH radical.

Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy duty Trucks for Euro 5 (Euro 5 경유 대형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Mun, Sunhee;Seo, Seokjun;Kim, Jounghwa;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Sung, Kijae;Kim, Sunmoon
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • Emission characteristics of regulated pollutants (CO, NOx, HC and PM) and hazardous air pollutants (HAPs) from diesel heavy duty trucks equipped with EGR+pDPF and SCR for Euro 5 emission standards were investigated using a chassis dynamometer. In the case of regulated pollutants, diesel heavy duty trucks with EGR+pDPF emitted 79% less CO than those with SCR. Also, those with the SCR emitted 36% less NOx than those with the EGR+pDPF. The results of VOCs have show that alkanes emissions for heavy duty trucks with the EGR+pDPF and the SCR have been higher than alkenes, cycloalkanes and aromatics. In the case of individual VOCs, the highest of propene emissions for 11.3~16.1% occupied. For aromatics group, benzene emissions are the highest percentage for 4.4~15.5%. In the future, the results of present study will provide basic data to set up HAPs emissions inventory for mobile source.

Development of Reduced Normal Dodecane Chemical Kinetics (축소 노멀 도데케인 화학반응 메커니즘 개발)

  • Lee, Sangyul;Kim, Gyujin;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.37-44
    • /
    • 2013
  • Generally, a reduced chemical mechanism of n-heptane is used as chemical fuel of a 3-D diesel engine simulation because diesel fuel consists of hundreds of chemical components and various chemical classes so that it is very complex and large to use for the calculation. However, the importance of fuel in a 3-D simulation increases because detailed fuel characteristics are the key factor in the recent engine research such as homogeneous charged compression ignition engine. In this study, normal paraffin, iso paraffin and aromatics were selected to represent diesel characteristics and n-dodecane was used as a representative normal paraffin to describe the heavy molecular weight of diesel oil (C10~C20). Reduced kinetics of iso-octane and toluene which are representative species of iso paraffin and aromatics respectively were developed in the previous study. Some species were selected based on the sensitivity analysis and a mechanism was developed based on the general oxidation scheme. The ignition delay times, maximum pressure and temperature of the new reduced n-dodecane chemical mechanisms were well matched to the detailed mechanism data.

Roles of the meta- and the ortho-Cleavage Pathways for the Efficient Utilization of Aromatic Hydrocarbons by Sphingomonas yanoikuyae Bl

  • Jeongmin Song;Junghee Sung;Kim, Young-Min;Gerben J. Zylstra;Kim, Eungbin
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.245-249
    • /
    • 2000
  • Catabolic pathways for the degradation of various aromatics by Sphingomonas yanoikuyae Bl are intertwined, joining at the level of substituted benzoates, which are further degraded vita ring cleavage reactions. The mutant strain EK497, which was constructed by deleting a large DNA region containing most of the genes for biphenyl, naphthalene, m-xylene, and m-toluate degradation, was unable to grow on all of the aromatics tested except for benzoate as the sole source of carbon and energy.S. yanoikuyae EK497 was found to possess only catechol ortho-ring cleavage activity due to deletion of the genes for the meta-cleavage pathway. Wild-type S. yanoikuyae Bl grown on benzoate has both catechol orthoand meta-cleavage activity. However, m-xylene and m-toluate, which are metabolized through methylbenzoate, and biphenyl, which is metabolized through benzoate, induce only the meta-cleavage pathway, suggesting the presence of a substrate-dependent induction mechanism.

  • PDF

Effect of Temperature on Propylene Aromatization over MFI Type Zeolites (Propylene Aromatization에 미치는 온도 및 촉매의 영향)

  • Park, Jin-U;Kim, Sang-Bum;Kwak, Yun-Cheol;Shin, Ki-Seok;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • [Ga]-MFI and H-ZSM-5 catalysts were synthesized under atmospheric pressure and used in the propylene aromatization. The effect of temperature on the product distribution was also investigated. The catalytic activities of the prepared catalysts were compared with the commercialized H-ZSM-5 which was converted from $NH_{4}$-ZSM-5. In the propylene aromatization, product distribution does not depend on the ratio of Si/$Ga_{2}$ with [Ga]-MFI catalyst, but depend on the ratio of Si/$Al_{2}$ with H-ZSM-5 catalyst [Ga]-MFI catalyst shows better dehydrogenation and alkylation activities than H-ZSM-5 catalyst The addition of Ga to H-ZSM-5 catalyst increases the conversion of propylene, selectivity to aromatics, and alkylation. In the propylene aromatization, the selectivity to aromatics slightly increased with increasing temperature with [Ga]-MFI catalyst, while slightly decreased with increasing temperature with H-ZSM-5 catalyst.

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran;Hak-Dong Lee;Sun-Hyung Kim;Seok Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.338-344
    • /
    • 2023
  • Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.