• Title/Summary/Keyword: aromatic hydrocarbon

Search Result 277, Processing Time 0.024 seconds

Prediction of Photo-Carcinogenicity from Photo-Ames Assay (Photo-Ames Assay를 이용한 광발암성 예측)

  • Hong Mi Young;Kim Ji Young;Chung Moon Koo;Lee Michael
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Many compounds might become activated after absorption of UV light energy. In some cases, the resulting molecule may undergo further biological reaction of toxicological relevance related especially to the photo-carcinogenicity resulting from photo-genotoxicity. However, no regulatory requirements have been issued with the exception of guideline issued by the Scientific Committee of Cosmetology, Commission of the European Communities (SCC/EEC) on the testing of sunscreens for their photo-genotoxicity. Thus, the objectives of this study are to investigate the utility of photo-Ames assay for detecting photo-mutagens, and to evaluate its ability to predict rodent photo-carcinogenicity. Photo-Ames assay was performed on five test substances that demonstrated positive results in photo-carcinogenicity tests: 8-methoxypsoralen (photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation), chlorpromazine (an aliphatic phenothiazine an a-adr-energic blocking agent), lomefloxacin (an antibiotic in a class of drugs called fluoroquinolones), anthracene (a tricyclic aromatic hydrocarbon a basic substance for production of anthraquinone, dyes, pigments, insecticides, wood preservatives and coating materials) and retinoic acid (a retinoid compound closely related to vitamin A). Out of 5 test substances, 3 showed a positive outcome in photo-Ames assay. With this limited data set, an investigation into the predictive value of this photo-Ames test for determining the photo-carcinogenicity showed that photo-Ames assay has relatively low sensitivity (the ability of a test to predict carcinogenicity). Thus, to determine the use of in vitro genotoxicity tests for prediction of carcinogenicity,' several standard photo-genotoxicity assays should be compared for their suitability in detecting photo-genotoxic compounds.

  • PDF

Induction of Heat Shock Proteins and Antioxidant Enzymes in 2,3,7,8-TCDD-Induced Hepatotoxicity in Rats

  • Kim, Hyun-Sook;Park, So-Young;Yoo, Ki-Yeol;Lee, Seung Kwan;Jung, Woon-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an environmental toxicant with a polyhalogenated aromatic hydrocarbon structure and is one of the most toxic man-made chemicals. Exposure to 2,3,7,8-TCDD induces reproductive toxicity, immunotoxicity, and hepatotoxicity. In this study, we evaluated how 2,3,7,8-TCDD-induced hepatotoxicity affect the expression of heat shock proteins and antioxidant enzymes using the real-time polymerase chain reaction (PCR) in rat. 2,3,7,8-TCDD increased heat shock protein (Hsp27, ${\alpha}$-B-crystallin, Mortalin, Hsp105, and Hsp90s) and antioxidant enzymes (SOD-3, GST and catalase) expression after a 1 day exposure in livers of rats, whereas heat shock protein (${\alpha}$-B-crystallin, Hsp90, and GRP78) and antioxidant enzymes (SOD-1, SOD-3, catalase, GST, and GPXs) expression decreased on day 2 and then slowly recovered back to control levels on day 8. These results suggest that heat shock proteins and antioxidant enzymes were induced as protective mechanisms against 2,3,7,8-TCDD induced hepatotoxicity, and that prolonged exposure depressed their levels, which recovered to control levels due to reduced 2,3,7,8-TCDD induced hepatotoxicity.

Prediction of PAHs Concentration using Statistical Analysis for Soil Recycling (토양 재활용을 위한 통계적 분석의 PAHs 농도 예측)

  • Kim, Jongo;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.56-61
    • /
    • 2017
  • This study investigated the feasibility of a statistical approach for soil recycling through the prediction of BaP, DahA and total PAH (${\Sigma}PAH$) concentrations from BaA concentration. As results of regression, excellent linear correlations ($R^2$ > 0.90) were observed between BaA and BaP (or DahA) concentrations. When a developed prediction equation was applied to other investigations as a validation study, good prediction results were obtained. The predictive model showed very good correlation between the measured and calculated BaP. From this equation, BaA was an apparently important hydrocarbon for the prediction of PAHs. This model might provide a potentially useful tool for the calculation of average BaP, DahA and ${\Sigma}PAH$ without additional tests.

Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging

  • Kim, Youn Jin;Lee, Ji Eun;Jang, Hye Sung;Hong, Sung Yun;Lee, Jun Bae;Park, Seo Yeon;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.220-226
    • /
    • 2021
  • The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor-alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.

Characteristics of Groundwater, Sewage Water and Stream Water Contamination Based on VOCs Concentration Around Ulsan, Korea (울산지역 지하수, 하수 및 하천수의 VOCs 오염특성)

  • Cho, Byong-Wook;Yun, Uk;Im, Hyun-Chul;Sung, Ig-Hwan;Jang, Woo-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • To investigate the characteristics of the volatile organic compounds (VOCs) concentration in the groundwater around Ulsan, Korea, 168 groundwaters, 12 stream waters, and 6 sewage waters were analyzed for 61 VOCs. Results showed that VOCs were not detected in stream waters and total VOCs concentration in 5 sewage waters was in the range of ND-22.3 ${\mu}$g/L. In 78 groundwater samples more than one VOCs were detected and VOCs concentration of the samples ranged from 0.1 ${\mu}$g/L to 387.1 ${\mu}$g/L. However, VOCs concentration of 66 samples out of 78 samples showed less than 10 ${\mu}$g/L and that of only 6 samples exceeded Korea drinking water limit (KDWL). 42 VOCs detected from the 168 groundwaters were 14 aromatic hydrocarbons out of 25, 27 chlorinated aliphatic hydrocarbons out of 35, and methyl tert-butyl ether (MTBE). Detection rate of each VOCs in the groundwaters was as follows: chloroform in 43 samples (25.6%), methylene chloride in 36 samples (21.4%), TCE in 26 samples (15.5%), 1,1-dichloroethane in 19 samples (1.3%), PCE in 16 samples (9.5%), cis-1,2-DCE in 15 samples (8.9%), and toluene in 14 samples (8.3%). Even though VOCs concentration in the groundwaters of the study area is still low, the city is expanding and the drinking water limit is becoming strict, and therefore continuous monitoring is necessary.

Study on the Coke Oven Emissions in Cokes Using and Manufacturing Workplaces (코크스 제조 및 사용 공정에서의 코크스오븐 배출물질 연구)

  • Lee, Jong-chun;Ahn, Kyu-Dong;Cho, Kwang-Sung;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • This study was performed to evaluate the coke oven emissions (COE) and polynuclear aromatic hydrocarbon levels in coke manu-facturing industry, secondary lead smelting industry and glass bottle manufacturing industry. 1. There were no significant difference between the means of personal samples and area samples by the types of industry(p>0.05). The levels of airborne total particulates of the secondary lead smelting industry was the highest($2.30mg/m^3$), and those of the coke manu-facturing industry and glass bottle manu facturing industry were $1.95mg/m^3$ and $1.37mg/m^3$. The concentration of COE was the highest in the glass bottle manufacturing industry($0.79mg/m^3$), and in order of $0.19mg/m^3$ in the coke manufacturing industry and $0.06mg/m^3$ in the secondary lead smelting industry. COE/total particulates(%) was highest in the glass bottle manufacturing industry(58.1%) and in order of 10.3% in the coke manufacturing industry and 3.1% in secondary lead smelting industry. There were significant differences in the total particle concentration and COE by the types of industry(p<0.05). 2. The levels of airborne total particulates was the highest at the smelting process of secondary lead smelting industry($2.30{\pm}0.72mg/m^3$), and the lowest at the smelting process of glass bottle manufacturing industry ($0.99{\pm}1.22mg/m^3$) Concentration of COE was the highest at the casting process of glass bottle manufacturing industry ($1.09{\pm}1.15mg/m^3$), the lowest at the smelting process of secondary lead smelting industry ($0.06{\pm}0.03mg/m^3$). The COE/total particulates(%) was the highest at the casting process of glass bottle manufacturing industry($65.9{\pm}20.5%$), and the lowest at the smelting process of secondary lead smelting indusry($3.1{\pm}2.7%$). 3. There were positive correlations between level of The airborne total particulates and concentration of COE in coke manufacturing industry and glass bottle manufacturing industry (p<0.05), but negative correlation in secondary lead smelting industry. 4. The numbers of case and rates that over the Threshold Limit Values(TLVs) were 24 (77.4%)cases in glass bottle manufacture, 14(23.7%) cases in the coke manufacturing industry and no one case in secondary lead smelting industry. Total numbers of case and rates that over TLVs were 38( 35.5%) cases. 5. The limit of detection(LOD) for PAH was $10{\mu}g/ml$ in standard sample. All PAH levels of the cokes manufacturing industry and the secondary lead smelting industry and the glass bottle manufacturing industry were trace or not to detect.

  • PDF

Effects if Benzo(a)pyrene on Natural Killer Cell Activity of Mice (Benzo(a)pyrene이 마우스 자연살해세포 활설에 미치는 영향)

  • Oh, Dong-Il;Kim, Kwang-Hyuk;Lee, Chung-Han;Chung, Hyun-Kee;Park, Jae-Sun
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.257-262
    • /
    • 1998
  • Benzo(a)pyrene(B(a)P), an extensively studied polycyclic aromatic hydrocarbon(PAH), is a common contaminant produced through the burning of fossil fuels, particularly coal, and from the exhaust products of internal combustion engines. It produces a wide range of toxicities, including carcinogenicity in experimental animals. B(a)P has been shown to suppress systemic immunity in experimental animals, which may contribute to the growth of the chemical-induced tumors. Using colorimetric MTT assay natural killer(NK) cell-mediated growth inhibition of tomor cell was measured in normal and B(a)P-exposed C57BL/6 mice. Non-adherent splenocytes of normal or B(a)P-exposed mice were cultured with Yac-1 cells at four different effector/target(E/T) cell ratios ranging from 200/1, 100/1, 50/1, and 25/1 in an assay volume of 0.1 ml. After the optical density of culture wells containing MTT solution was measured at a wavelength of 540 nm, the percentage of dead cells relative to the control target cell number was calculated. The NK activity of B(a)P-exposed mice was markedly lower than that of non-exposed mice group at all E/T ratios. These results indicated that suppression of NK cell activity may play a role in allowing for the growth of tumors.

  • PDF

Refining of Vacuum Residues by Aquathermolysis Reaction (Aquathermolysis 반응에 의한 감압잔사유의 개질)

  • Ko, Jin Young;Park, Dong Ho;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at $300^{\circ}C$ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.

Aroma Characteristics of Dried Citrus Fruits-Blended Green Tea (건조된 감귤류(밀감 및 유자)를 혼합한 녹차의 휘발성 향기성분)

  • Jeon, Ju-Yeon;Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.739-745
    • /
    • 2011
  • The purpose of this study was to characterize the aroma of green tea blended with dried citrus fruits containing peeler. Whether middle or low grade green tea is consumed does not have an influence on health benefits, but it does havean influence on flavor. Therefore, two kinds of citrus fruits (mandarin orange and citron) were used to infuse the teas with aromatic flavors. This process turned unflavored tea into special tea with a good color and preferable flavor. Aroma compounds were extracted by SDE method. The concentrated aroma extracts were analyzed and identified by GC and GC-MS. The main aroma components of the green tea blended with mandarin orange were limonene (72.18%), (Z)-ocimene (8.29%), phenyl acetaldehyde (6.15%), ${\gamma}$-terpinene (5.14%), ${\beta}$-elemene (1.80%) and linalool (1.00%). The main aroma components of the green tea blended with citron were limonene (71.74%), ${\gamma}$-terpinene (9.76%), (Z)-ocimene (5.38%), (E)-ocimene (4.36%), linalool (1.00%) and ${\beta}$-mycrene (0.87%). The aromas of green tea blended with dried citrus fruits were mainly mono - and sesquiterpenic compounds.

Development of Simple Test Method using VOC Analyzer to Measure Volatile Organic Compounds Emission for Particleboards (VOC Analyzer를 이용한 파티클보드로부터 방산되는 휘발성유기화합물의 간이 측정방법 개발)

  • An, Jae-Yoon;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong;Mun, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.22-30
    • /
    • 2006
  • The volatile organic compound (VOC) Analyzer is a portable device to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styrene. With the VOC Analyzer, a semiconductor gas sensor eliminates the need for the carrier gas which is required for conventional gas chromatographs. In addition, since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. Compared with other measurement methods, the VOC analyzer is useful for measuring toluene, ethylbenzene, xylene and styrene in wood-based panel because of its ease in obtaining field results and repeating the test. The VOC Analyzer primarily measures four VOC in the air. In this study, we designed a test method of VOC measurement for particle board. A specimen was sealed in 3L polyester bag, after 96hours we could measure maximum VOC emission level that is a stabilized VOC Value. For easy, fast and economic testing of TVOC emission from wood-based panel, we developed the test method with the VOC Analyzer. The VOC Analyzer is expected to gain widespread use in the manufacturing field where a quick and easy test for VOC emission from wood-based panel is required. Furthermore, the VOC Analyzer promises to become an easier, faster and more economic technique than the currently used standard methods.