• Title/Summary/Keyword: aromatic and aliphatic diisocyanates

Search Result 5, Processing Time 0.016 seconds

Synthesis and Physical Properties of Polycaprolactone Based Polyurethanes Using Aliphatic or Aromatic Diisocyanates (지방족 및 방향족 이소시아네이트를 이용한 폴리카프로락톤계 폴리우레탄의 합성 및 물성 연구)

  • Kim Sun-Mi;Kwak Noh-Seok;Yang Yun-Kyu;Yim Bong-Kyun;Park Bo-Young;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.253-259
    • /
    • 2005
  • Polyurethanes, synthesized by polyester polyols and aliphatic or aromatic diisocyanates for a crease resist finishing agent, were prepared by two-step reactions, that is, prepolymer synthesis and chain extension. The structures of synthesized polyurethanes were confirmed by the measurement of FT-IR and $^1H$-NMR spectrometer. The number average molecular weight ($\bar{M}_n$) and the weight average molecular weight ($\bar{M}_w$) of the polyurethane with aromatic diisocyanate (MDI) were higher than those of the synthesized polyurethanes with aliphatic diisocyanate (HDI, $H_{12}MDI$). The glass transition temperatures ($T_g$) of soft segments in polyurethanes with MDI, HDI, $H_{12}MDI$ were -25,-42 and -50$^{circ}C$, respectively. In the polyurethanes obtained by two-step reaction, thermal stability and tensile strength increased with increasing hard segment contents, whereas elongation at break decreased with increasing hard segment contents.

Effect of the Diisocyanate Type on the Hydrolysis Behavior of Polyurethane

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • The effect of diisocyanate type on the decomposition temperature of polyurethane (PU) hydrolysis was investigated in a subcritical water medium up to 250℃. PU samples were prepared using different types of diisocyanate: two aromatic diisocyanates (4,4'-methylene diphenyl diisocyanate (MDI) and methyl phenylene diisocyanate (TDI)), one unbranched aliphatic diisocyanate (hexamethylene diisocyanate (HDI)), and two cyclic aliphatic diisocyanates (4,4'-methylene dicyclohexyl diisocyanate (H12MDI) and isophorone diisocyanate (IPDI)). The pressure had no effect on hydrolysis in the range of 70-250 bar. The decomposition temperature of the PU samples increased in the following order: TDI-PU (199℃) < H12MDI ≈ IPDI ≈ HDI (218-220℃) < MDI-PU (237℃). This order of increase in temperature is related to the electron-donating ability of the group to connected to the nitrogen of the urethane unit. When the temperature of the (PU + water) mixture reached the specific decomposition temperature, the PU samples hydrolyzed completely within 5 min into primary amine and 1,4-butanediol. The hydrolysis products from MDI-PU and H12MDI-PU were separated into a liquid phase rich in (BD + water) and a solid low phase rich in amine, whereas the products from TDI-, IPDI-, and HDI-PU existed in a single aqueous phase.

Synthesis and Characterization of Novel Polyurethanes Based on 4-{(4-Hydroxyphenyl)iminomethyl} phenol

  • Raghu, A.V.;Jeong, Han-Mo;Kim, Jae-Hoon;Lee, Yu-Rok;Cho, Youn-Bok;Sirsalmath, Kiran
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.194-199
    • /
    • 2008
  • Four novel polyurethanes were prepared from 4-{(4-hydroxyphenyl)iminomethyl} phenol by reactions with two aromatic diisocyanates, 4,4'-diphenylmethane diisocyanate and toluene 2,4-diisocyanate, and two aliphatic diisocyanates, isophorone diisocyanate and hexamethylene diisocyanate. The polyurethanes formed were characterized by UV-vis, fluorescence, FT-IR, $^1H$-NMR, $^{13}C$-NMR, differential scanning calorimetry, thermogravimetry, and X-ray diffraction. The polymers were semi-crystalline and all polymers were soluble in polar aprotic solvents.

Chemical Composition of Painting Materials used in Some Korean Shipyards (조선업의 도장 작업시 취급하는 도료중 유해물질 성분에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.156-172
    • /
    • 1999
  • Potential chemical hazards encountered in painting operation of four shipyards and a ship-repair shop were investigated through the material safety data sheets (MSDS). Material safety data sheets (MSDS) for 307 paints, 50 thinners and 34 binders were collected and reviewed. It was shown that various organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, ketones, alcohols, glycols, glycol ether acetates and esters were contained in painting materials. Of these solvents, xylene was found in the largest number of painting materials. sixty percent of the thinners contained xylene in the contents of 20-100%. Other most frequently found solvents were 1-methoxypropanol, 1-methoxypropyl acetate, n-butanol, methyl isobutyl ketone, toluene, isopropanol, and n-butyl acetate, etc. Glycol ethers such as 2-methoxyethanol (2-ME), 2-methoxyethyl acetate (2-MEA), 2-ethoxyethanol (2-EE), 2-ethoxyethyl acetate (2-EEA) and 2-butoxyethanol (2-BA) were regarded as having the potential to cause adverse reproductive effects, embryotoxic effect and hematotoxic effects, and were found in some epoxy panting materials. Coal tar pitch was included in some paints(13%) where polynuclear aromatic hydrocarbons (PAHs) could be contaminated. Inorganic pigments such as lead chromate and zinc potassium chromate were found in some paints (8%). The epoxy resin based paints, which may contain isocyanates such as toluene diisocyanates and hexamethylene diisocyanates causing potential sensitization and asthma to upper respiratory organ, were mostly used in the shipyards. The constituents in the MSDS were significantly different from the results analyzed using gas chromatography/mass detector: minor constituents or impurities were omitted in many MSDS. In conclusion, xylene was the most frequent organic solvent in painting materials, and glycol ethers, including 2-ME, 2-MEA, 2-EE, 2-EEA and 2-BA, were found some products. Also, painting workers may be exposed to PAHs, lead, chromate, isocyanates, organic tin and other various chemicals. The compositions of chemicals in painting materials were variable significantly, and the hazards were changed. These facts should be considered in environmental monitoring and control of the hazards.

  • PDF

Thermal Decomposition Behavior of Blocked Diisocyanates Derived from Mixture of Blocking Agents

  • Lee Jung Min;Subramani Sankaraiah;Lee Young Soo;Kim Jung Hyun
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.427-434
    • /
    • 2005
  • To improve the performance and reduce raw material costs, blocked isocyanates were prepared with mixture of blocking agents in many industries. Three blocked isocyanates (adducts) namely $\varepsilon$-caprolactam/benzotriazole-blocked 4,4'-diphenylmethane diisocyanate (MDI), toluene-2,4-diisocyanate (TDI) and 4,4'-dicyclohexyl-methane diisocyanate ($H_{12}$MDI) were synthesized. Six reference adducts were also prepared by blocking MDI, TDI, and $H_{12}$MDI with $\varepsilon$-caprolactam ($\varepsilon$-CL) or benzotriazole. The reactions were carried out in acetone medium and dibutyltin dilaurate (DBTDL) was used as a catalyst. The progress of the blocking reaction was monitored by IR spectroscopy. De-blocking temperatures (dissociation temperatures) of these adducts were studied using DSC and TGA and the results were correlated. As expected, the thermal analysis data showed that de-blocking temperature of blocked aromatic isocyanates was lower than that of the blocked aliphatic isocyanates. The low de-blocking temperature of blocked aromatic isocyanate could be due to electron withdrawing benzene ring present in the blocked isocyanates. It was also found that benzotriazole-blocked adducts de-blocked at higher temperature compared with $\varepsilon$-CL-blocked adducts.