• Title/Summary/Keyword: armor units

Search Result 32, Processing Time 0.019 seconds

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.