• 제목/요약/키워드: arima

검색결과 493건 처리시간 0.017초

SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측 (Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models)

  • 오인정;김우주
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.191-209
    • /
    • 2022
  • 2020년 코로나19 발발 이후 한국 경제를 포함한 국제 시장 환경은 급속하게 변하고 있고 한국 금융시장의 중요 경제 지표인 원/달러 환율도 요동치고 있다. 대외 의존도가 높은 한국 경제에서 환율에 대한 이해는 항상 중요한 연구 과제였고, 특히 코로나 확산이 환율에 미치는 연구는 시기적으로 많은 경제 학자들의 관심사이기도 하다. 따라서 본 연구는 코로나19 발발 이후 환율과 경제 지표의 관계를 분석하고 환율 예측을 위한 단변량 다변량 예측 모형을 구축하여 모형의 예측 성능을 비교 검증을 하였다. 코로나 전후 기간을 세 기간으로 나눠서 기간 1은 코로나 발발전과 초기, 기간 2는 코로나 대확산, 기간 3을 코로나 안정기로 나누고 기간 1의 환율 데이터를 학습한 SARIMA 모형과 같은 기간의 경제 변수와 환율 데이터를 학습한 ARDL 모형의 예측 성능을 비교하였다. 기간별 RMSE기준으로 SARIMA 모형은 기간 2에서 예측 성능이 뛰어나고 ARDL 모형은 기간 3에서 예측 성능이 가장 우수한 것으로 나타났다. 연구 결론은 환율과 경제 변수의 통상적인 관계가 나타나는 기간 3에서는 변수 관계를 반영하는 ARDL 모형이 좀 더 예측 성능이 좋은 모델이고 기존의 전형적인 환율과 경제 변수의 패턴에서 벗어난 과도기 시기인 기간 2에는 과거 환율 추이만 반영하는 SARIMA 모형이 좀 더 우수한 예측 성능을 보여주는 모델로 검증되었다.

부산항 컨테이너 물동량을 이용한 시계열 및 딥러닝 예측연구 (Time series and deep learning prediction study Using container Throughput at Busan Port)

  • 이승필;김환성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.391-393
    • /
    • 2022
  • 최근에는 딥러닝과 빅데이터를 기반으로 한 수요예측 기술이 전자상거래, 물류, 유통 분야의 스마트화를 가속화하고 있다. 특히, 글로벌 운송 네트워크와 현대적인 지능형 물류의 중심인 항만은 4차 산업혁명으로 인한 세계 경제 및 항만 환경의 변화에 발 빠르게 대응하고 있습니다. 항만물동량 예측은 신항만 건설, 항만확장, 터미널 운영 등 다양한 분야에서 중요한 영향을 담당하고 있다. 따라서 본 연구의 목적은 항만 물동량 예측에 자주 쓰이는 시계열 분석과 타 산업에서 좋은 결과를 도출해내고 있는 딥러닝 분석을 비교하여 부산항의 미래 컨테이너 예측에 적합한 예측모델을 제시하는 것이다. 부산항 컨테이너 물동량을 이용하여 학습시키고 그 이후 물동량 예측을 진행하였다. 또한, 상관관계 분석을 통해 물동량 변화와 관련된 외부변수를 선정하여 다변량 딥러닝 예측모델에 적용하였다. 그 결과 부산항 컨테이너 물동량만 이용한 단일변수 예측모델에서 LSTM의 오차가 가장 낮았고, 외부변수를 이용한 다변수 예측모델에서도 LSTM의 성능이 가장 우수하였다.

  • PDF

데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로 (The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction)

  • 천세학
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.239-251
    • /
    • 2019
  • 본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.