• Title/Summary/Keyword: arginine vasotocin receptor

Search Result 1, Processing Time 0.018 seconds

Hypoosmotic shock adaptation by prolactin involves upregulation of arginine vasotocin and osmotic stress transcription factor 1 mRNA in the cinnamon clownfish Amphiprion melanopus

  • Park, Mi Seon;Kim, Na Na;Shin, Hyun Suk;Min, Byung Hwa;Kil, Gyung-Suk;Cho, Sung Hwoan;Choi, Cheol Young
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.391-399
    • /
    • 2012
  • We cloned cDNA-encoding arginine vasotocin (AVT) from the brain of the cinnamon clownfish Amphiprion melanopus, and that was predicted to encode a protein of 153 amino acids. We examined changes in the expression of AVT mRNA in the brain and arginine vasotocin receptor (AVTR) mRNA and osmotic stress transcription factor 1 (OSTF1) mRNA in the gills of the cinnamon clownfish using quantitative real-time PCR in an osmotically changing environment (seawater (35 psu) ${\rightarrow}$ brackish water (BW, 17.5 psu) and BW with prolactin [PRL]). The expression of AVT, AVTR, and OSTF1 mRNA in the brain and gills increased after transfer to BW, and the expression was repressed by PRL treatment. AVT-immunoreactive cells were almost consistently observed in the telencephalon. The plasma $Na^+$ and $Cl^-$ levels decreased in BW, but the level of this parameter increased in BW with PRL treatme during salinity change. These results suggest that AVT, AVTR, and OSTF1 play important roles in hormonal regulation in osmoregulation organs, and that PRL improves the hyperosmoregulatory ability of cinnamon clownfish in BW environment.