• Title/Summary/Keyword: areal rainfall

Search Result 111, Processing Time 0.024 seconds

An Analysis on the Long-Term Runoff of the Yong San River (영산강의 장기유출량에 관한 고찰)

  • 한상욱;정종수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4184-4194
    • /
    • 1976
  • Located in the southwestern part of Korea, the Yong San Gang river flows generally northeast to southwest, and because of the specific location, topography and climate, the basin area is subject to recurrent drought and flood damages. To eliminate the cause of such damages and ensure an increase in the farm income by means of effective irrigation supply and increased cropping intensity, efforts are being made to speed up implementation of an integrated agricultural development project which would include construction. of an estuary dam and irrigation facilities as well as land development and tidal reclarnation. In formulating a basin development project plan, it is necessary to study a series of long-term runoff data. The catchment area at the proposed estuary damsite is 3,471$\textrm{km}^2$ with the total length of the river channel up to this point reaching 138km. An analysis of runoff in this area was carried out. Rainfall was estimated by the Thiessen Network based on records available from 15 of the rainfall observation stations within the area. Out of the 15 stations, Kwang Ju and Mok Po stations were keeping long-term precipitation records exceeding some 60 years while the others were in possession of only 5-10 years records. The long-term records kept by those stations located in the center of the basin were used as base records and records kept by the remaining stations were supplemented using the coefficient of correlation between the records kept by the base stations and the remainder. The analyses indicate that the average annual rainfall measured at Kwang Ju during 1940-1972 (33 years) amounts to 1,262mm and the areal rainfall amounts to 1,236mm. For the purpose of runoff analysis, 7 observatories, were set up in the middle and lower reaches of the river and periodic measurements made by these stations permitted analysis of water levels and river flows. In particular, the long-term data available from Na Ju station significantly contributed to the analysis. The analysis, made by 4-stage Tank method, shows that the average annual runoff during 1940-1972 amounts to 2,189 million ㎥ at the runoff rate of 51%. As for the amount of monthly runoff, the maximum is 484.2 million ㎥ in July while the minimum is 48.3 million ㎥ in January.

  • PDF

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.

DAD Analysis of Yongdam Dam Watershed Using the Cell-Based Automatic Rainfall Field Tracking Methods (격자기반의 자동 강우장 탐색기법을 활용한 용담댐 유역 DAD분석)

  • Song, Mi-Yeon;Jung, Kwan-Sue;Lee, Gi-Ha;Kim, Yeon-Su;Shin, Young-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.68-81
    • /
    • 2014
  • This study aims to apply and evaluate the automatic DAD analysis method, which is able to establish the depth-area relationship more efficiently and accurately for point-to-areal rainfall conversion. First, the proposed automatic DAD analysis method tracks the expansion route of area from the storm center, and it is divided into Box-tracking, Point-tracking, Advanced point-tracking according to tracking method. After applying the proposed methods to 10 events occurred in Yongdam-watershed area, we confirmed that the Advanced point-tracking method makes it possible to estimate the maximum average areal rainfal(MAAR) more accurately with consideration of the storm movement and the multi-centered storm. In addition, Advanced point-tracking could reduce the errors of the estimated MAAR induced by increasing the area because it can estimate MAAR for each storm center and compare them at the same time. Finally, the DAD curve for the study area could be derived based on the DAD analysis of the selected 10 events.

Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme (모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링)

  • Park, Sang-Sik;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

A Study on Estimation of Areal Rainfall Quantiles using AWS Rainfall Data (AWS 강우자료를 이용한 면적확률강우량 산정에 관한 연구)

  • Kim, Min Seok;Son, Hong Min;Hwang, Sung Hwan;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.184-184
    • /
    • 2015
  • 수공구조물의 설계 시 확률강우량의 산정은 매우 중요하다. 따라서 확률강우량 산정을 위한 강우지점의 선정 및 산정방법의 표준화는 매우 중요하다고 할 수 있다. 현재 확률강우량 산정시 대부분은 기상청의 지상기상관측지점과 국토교통부의 산하 지점의 시 단위 또는 일 단위의 강우자료를 활용하여 확률강우량을 산정하고 있다. 또한 면적확률강우량의 산정시에는 원칙적으로 해당 유역내 외에 다수의 관측소 존재 시 Thiessen 가중평균을 이용하여 동시간 임의시간 연최대치 면적강우량자료 계열을 작성하고 빈도해석을 실시해야하지만, 동시간 강우량자료의 수집의 어려움으로 지점 확률강우량을 산정하고 Thiessen 가중평균을 적용 후, 면적우량환산계수를 곱하는 방법을 사용하고 있다. 본 연구에서는 서울의 도림천 유역을 중심으로 기상청의 지상기상관측지점(SSS, Surface Synoptic Stations)과 품질관리를 실시한 방재기상관측지점(AWS, Automatic Weather Stations)의 분 단위 강우자료를 활용하여 강우관측지점 선정과 자료기간에 따른 동시간의 면적확률강우량을산정하고 비교분석하였다. 이는 향후 면적확률강우량 산정방안의 개선 및 보완에 큰 도움이 될 것으로 판단된다.

  • PDF

Limitations of Estimating Watershed Areal Rainfall Using Point Gauge Rainfall (지점 강우량을 이용한 유역평균 강우량 산정의 한계)

  • Hwang, Seok Hwan;Yoon, Jung Soo;Kang, Na Rae;Noh, Hui Seong;Cho, Hyo Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.229-229
    • /
    • 2019
  • 본 연구에서는 현행 홍수예보에 활용되고 있는 지점 강우량의 면적강우량 산정 방법인 티센(Thiessen) 방법의 유역 평균 강우량 산정 시 발생하는 구조적 문제점을 검토하여 보았다. 현행지상 강수량계 기반의 면적평균강우량 산정 방법은 호우의 이동 방향에 따라 실제 강우량과 시차가 발생할 수 있는 구조적 문제점을 가지고 있다. 분석 결과 호우의 이동방향에 따른 강우의 시차발생이나 내삽 영역의 불확실성은 지점 강우량 관측의 한계로 티센방법 뿐만 아니라 지점 강우량을 사용하는 다른 내삽 방법에서도 정도의 차이는 있지만 유사하게 나타났다. 그러나 티센방법은 유역별 지점의 가중치(영향영역)가 고정되어 있기 때문에 이러한 현상이 심각하게 나타났다. 즉 현행 티센방법에 의한 지상 강우량의 면적평균 강우량 산정 방법은 시공간적으로 큰 바이어스를 초래가 가능하다. 크리깅 방법을 이용하면 시공간적 바이어스 감소하나 지점 관측의 한계를 완전하게 해소하는데는 미흡한 것으로 나타났다. 따라서 지점강우량 기반의 티센 유역평균 강수량 산정 체계에서 레이더 기반 유역평균 강우량 생산 활용 체계로 전환이 필요하다고 판단된다.

  • PDF

Development of Rainfall - Delayed Response Model for the Calculation of Baseflow Proportion (기저유출량추정을 위한 강우 지연반응모형 개발)

  • 홍종운;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.31-43
    • /
    • 1988
  • The Purpose of this study is to develop the rainfall-delayed response model (RDR Model) which influences the baseflow proportion of rivers as a result of the antecedent precipitation of the previous several months. The assesment of accurate baseflows in the rivers is one of the most important elements for the planning of seasonal water supply for agriculture, water resources development, hydrological studies for the availability of water and design criteria for various irrigation facilities. The Palukan river gauging site which is located in the Pulukan catchment on Bali Island, Indonesia was selected to develop this model. The basic data which has been used comprises the available historic flow records at 19 hydrologic gauging stations and 77 rainfall stations on Bali Island in the study. The methology adopted for the derivation of the RDR model was the water balance equation which is commonly used for any natural catcbment ie.P=R+(catchment losses) -R+(ET+DP+DSM+DGW). The catchment losses consist of evapotranspiration, deep percolation. change in soil moisture, and change in groundwater storage. The catchment areal rainfall has been generated by applying the combination method of Thiessen polygon and Isohyetal lines in the studies. The results obtained from the studies may be summarized as follows ; 1. The rainfall-runoff relationship derived from the water balance equation is as shown below, assuming a relationship of the form Y=AX+B. Finally these two equations for the annual runoff were derived ; ARO$_1$=0.855 ARF-821, ARF>=l,400mm ARO$_2$=0.290ARF- 33, ARF<1,400mm 2. It was found that the correction of observed precipitation by a combination of Thiessen polygons and Isohyetal lines gave good correlation. 3. Analysis of historic flow data and rainfall, shows that surface runoff and base flow are 52 % and 48% (equivalent to 59.4 mm) of the annual runoff, respectively. 4. Among the eight trial RDR models run, Model C provided the correlation with historic flow data. The number of months over which baseflow is distributed and the relative proportions of rainfall contributing in each month, were estimated by performing several trial runs using data for the Pulukan catchment These resulted in a value for N of 4 months with contributing proportions of 0.45, 0.50, 0.03 and 0.02. Thus the baseflow in any month is given by : P$_1$(n) =0.45 P(n) +0.50 P(n-I ) +0.03 P(n-$_2$) +0.02 P(n-$_3$) 5. The RDR model test gave estimated flows within +3.4 % and -1.0 % of the observed flows. 6. In the case of 3 consecutive no rain months, it was verified that 2.8 % of the dependable annual flow will be carried over the following year and 5.8 % of the potential annual baseflow will be transfered to the next year as a result of the rainfall-delayed response. The results of evaluating the pefformance of the RDR Model was generally satisfactory.

  • PDF

Prediction of Salinity Changes for Seawater Inflow and Rainfall Runoff in Yongwon Channel (해수유입과 강우유출 영향에 따른 용원수로의 염분도 변화 예측)

  • Choo, Min Ho;Kim, Young Do;Jeong, Weon Mu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.297-306
    • /
    • 2014
  • In this study, EFDC (Environmental Fluid Dynamics Code) model was used to simulate the salinity distribution for sea water inflow and rainfall runoff. The flowrate was given to the boundary conditions, which can be calculated by areal-specific flowrate method from the measured flowrate of the representative outfall. The boundary condition of the water elevation can be obtained from the hourly tidal elevation. The flowrate from the outfall can be calculated using the condition of the 245 mm raifall. The simulation results showed that at Sites 1~2 and the Mangsan island (Site 4) the salinity becomes 0 ppt after the rainfall. However, the salinity is 30 ppt when there is no rainfall. Time series of the salinity changes were compared with the measured data from January 1 to December 31, 2010 at the four sites (Site 2~5) of Yongwon channel. Lower salinities are shown at the inner sites of Yongwon channel (Site 1~4) and the sites of Songjeong river (Site 7~8). The intensive investigation near the Mangsan island showed that the changes of salinity were 21.9~28.8 ppt after the rainfall of 17 mm and those of the salinity were 2.33~8.05 ppt after the cumulative rainfall of 160.5 mm. This means that the sea water circulation is blocked in Yongwon channel, and the salinity becomes lower rapidly after the heavy rain.

Discussion for the Effectiveness of Radar Data through Distributed Storm Runoff Modeling (분포형 홍수유출 모델링을 통한 레이더 강우자료의 효과분석)

  • Ahn, So Ra;Jang, Cheol Hee;Kim, Sang Ho;Han, Myoung Sun;Kim, Jin Hoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.19-30
    • /
    • 2013
  • This study is to evaluate the use of dual-polarization radar data for storm runoff modeling in Namgang dam (2,293 $km^2$) watershed using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were obtained from Han River Flood Control Office. Even the radar data were overall less than the ground data in areal average, the spatio-temporal pattern between the two data was good showing the coefficient of determination ($R^2$) and bias with 0.97 and 0.84 respectively. For the case of heavy rain, the radar data caught the rain passing through the ground stations. The KIMSTORM was set to $500{\times}500$ m resolution and a total of 21,372 cells (156 rows${\times}$137 columns) for the watershed. Using 28 ground rainfall data, the model was calibrated using discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI) with 0.85, 0.78 and 1.09 respectively. The calibration results by radar rainfall showed $R^2$, ME and VCI were 0.85, 0.79, and 1.04 respectively. The VCI by radar data was enhanced by 5 %.

A Certification of Linear Programming Method for Estimating Missing Precipitation Values Ungauged (미계측 결측 강수자료 보완을 위한 선형계획법의 검정)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • The amount and continuity of precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study a linear programming method treated as a data-driven approach for estimating the missing rainfall data is compared with seven other methods widely used and its superiority is certified. The data used in this research are annual precipitation ones during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station are estimated and the areal averages of annual precipitation data for 32 years at the Han River basin are calculated.