• Title/Summary/Keyword: area source

Search Result 3,556, Processing Time 0.03 seconds

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

Estimation of Quantitative Source Contribution of VOCs in Seoul Area (서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

Application of SPOT 5 Satellite Image and Landcover Map for the examination of Soil Erosion Source Area (토사유실 원인지역 검토를 위한 SPOT 5 위성영상과 토지피복도의 활용)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.927-935
    • /
    • 2005
  • Soil erosion by rainfall is important factor for basin management because it reduces reservoir capacity and breaks out the contamination of water caused by turbid water. Recently, soil erosion study with GIS is in progress but does not consider soil erosion source area. This study calculated soil erosion amount using GIS-based soil erosion model in Imha basin and examined soil erosion source area using SPOT 5 High-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area by applying field survey method in common areas such as dry field and orchard area those are difficult to confirm soil erosion source area using satellite image.

Anisotropy of Magnetic Susceptibility of Cretaceous Volcanic Rocks in Euiseong Area (의성지역에 분포하는 백악기 화산암류에 대한 대자율 이방성연구)

  • Suk, Dongwoo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 1994
  • Euiseong sub-basin, one of three sub-basins in Kyungsang basin, consists of various sedimentary and igneous rocks of Cretaceous age. Kusandong tuff and Yucheon volcanic rocks from the sub-basin were collected for the anisotropy of magnetic susceptibility (AMS) study. Maximum directions of the AMS for Kusandong tuff and Yucheon volcanic rocks are used to detect possible source areas. Although the dispersion of the maximum directions of the AMS, mainly due to low susceptibility and/or low percent anisotropy of individual specimens, is rather large, it is possible to reveal several source areas for the volcanic rocks. Areas near the Keumseongsan and Hwasan, calderas in the study area, are identified as source areas for Yucheon volcanic rocks, while the western part of Sunamsan, another collapsed caldera in Euiseong sub-basin, is inferred to be the source area for Kusandong tuff. However, it is not possible to determine detailed source areas for groups of Yucheon volcanic rocks of different lithologies, because of poor degree of convergence of the maximum directions of the AMS results from the volcanic rocks. It is also concluded that several episodic volcanic activities centered at Keumseongsan and Hwasan calderas were responsible for the formation of Yucheon volcanic rocks in Euseong area.

  • PDF

Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model (AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가)

  • Jeong, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

The Application of Equivalent Area to the Volume Velocity for Using the Vibro-acoustical Reciprocity (진동-음향 상반 원리에 이용되는 음원의 유효 면적 측정)

  • 고강호
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.943-948
    • /
    • 1999
  • This paper proposes a feasible and effective method for measuring the mechanical-acoustic transfer function by the application of equivalent area and velocity transfer function, a manifestation of the vibro-acoustical reciprocity principle. On the contrary to the volume velocity used in traditional method, the equivalent area is a peculiar raidation characteristics of sound sources and not influenced by any input signal for driving sound source. This invariant property of equivalent area can get rid of boresome works to measure the volume velocity of a sound source every time the driving signal is changed. Moreover, this method has a remarkable advantage to use a general loudspeaker as an accoustic exciter without the assumption of point source and can be applied to all kinds of sound sources even if they are not omni-directional sources.

  • PDF

Characteristics of Non-point Source Runoff in Housing and Industrial Area during Rainfall (강우시 주택 및 공단지역의 비점오염원 유출특성)

  • Kim, Kang Suk;Park, Jong Seok;Hong, Hyeon Seung;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.581-589
    • /
    • 2012
  • Non-point source pollutant is exerting a serious influence on the water quality, since the characteristics of stormwater runoff is varied by the land usage pattern of an area and a basin, and all sorts of pollutants on the earth in rainfall flow into the urban stream. This study estimated EMC of each pollutant to investigate the characteristics of stormwater runoff by separating the urban area as the housing area and industrial area. As a result of the analysis, the first flush effect occurred in the non-point source pollutant of housing area and industrial area, as the runoff concentration gradually reduces after it rapidly increases in the initial rainfall, and in case of the non-point source pollutant the control of first stage rain-water. It is considered to require the continuous follow-up study such as the scale of long-term rainfall event and water quality data, land usage pattern by GIS method, database of topography and geological features, and so forth.

A study on the correlation between non-point source pollutants from the forest of Juam basin and algae bloom in the Juam lake. (주암호유역 산림기원 비점오염원물질과 주암호에 서식하는 조류번식간의 상관성 규명)

  • Kim, Nam-Jong;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.39-48
    • /
    • 2006
  • In Juam basin, the ratio of non-point pollution source among pollutant loading of basin was significantly high, since the utilization level of land was high. In addition, the most pollutants were not treated and flowed out. In this study, the correlation between non-point source pollutants from the forest area and increasing algae was investigated. 1. Chl-a concentration flowed out to runoff from forest area and stream water was low as $0.1{\sim}20.3{\mu}g/{\ell}$ and $0.1{\sim}9.3{\mu}g/{\ell}$, respectively, and chl-a concentration ($0.1{\sim}28.5{\mu}g/{\ell}$) of branch stream was higher $5{\sim}7$ times than that of runoff from forest area. 2. In correlation between runoff from forest area and Juam lake water, annual chl-a concentration of area front Juam dam was higher twice than forest area. 3. In runoff from forest area within Juam basin, flagellate, green, diatom and blue algae occupied $33.0{\sim}41.7%$, $22.2{\sim}30.8%$, $17.3{\sim}22.5%$ and $13.7{\sim}17.6%$, respectively. 4. In runoff from forest area, both green and diatom algae were maintained constantly irrespectively of season, and flagellate algae dominated since August. 5. In characteristics by forest tree types, four types algae were inhabited in mixed forest, and flagellate algae were higher in conifer and broadleaf forest than in other area. And green algae in herbaceous forest were higher than other area.

A Study on Elimination Solution of Parasitic Effect to Improve Area Efficiency and Frequency Stability of Relaxation Oscillator (이완 발진기의 면적 효율성과 주파수 안정성 향상을 위한 기생성분 효과 제거 기법연구)

  • Lee, Seung-Woo;Lee, Min-Woong;Kim, Ha-Chul;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.538-542
    • /
    • 2018
  • In order to generate a clock source with low cost and high performance in system on chip(SoC), a relaxation oscillator with stable output characteristics according to PVT(process, voltage and temperature) fluctuation require a low area and a low power. In this paper, we propose a solution to reduce the current loss caused by parasitic components in the conventional relaxation oscillator. Since the slew rate of the bias current and the capacitor are adjusted to be the same through the proposed solution, a relaxation oscillator with low area characteristics is designed for the same clock source frequency implementation. The proposed circuit is designed using the TSMC CMOS 0.18um process. The Simulation results show that the relaxation oscillator using the proposed solution can prevent the current loss of about $279{\mu}A$ and reduce the total chip area by 20.8% compared with the conventional oscillator in the clock source frequency of 96 MHz.