• Title/Summary/Keyword: area measuring

Search Result 1,962, Processing Time 0.036 seconds

Effects of the Open Level of the Side Window on the Control of the Temperature and Relative Humidity in the Fog Cooling Greenhouse (포그냉방 온실에서 측창개폐수준이 온습도 제어에 미치는 영향)

  • Kim, Young-Bok;Sung, Hyun-Soo;Yun, Nam-Kyu;Lee, Si-Young;Hwang, Seung-Jae;Kim, Hyeon-Tae;Lee, Jang-Pyung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.265-278
    • /
    • 2011
  • Effects of the open level of the side window were studied to control the temperature and relative humidity in the fog cooling greenhouse. The greenhouse was cooled by air atomizing spray nozzles of the air and water two-fluid process. The control process includes the measuring of environmental variables, setting and coding of the water balance equations and heat balance in greenhouse, calculating of the roof window open and spray water, and operating of the motor and pump. The target temperature and relative humidity were set at $28^{\circ}C$, 75%, respectively. The three modes of the side window open level were 0%, 50% and 100%. The average dry bulb temperatures of the inside air were 28.2, 27.2 and $26.3^{\circ}C$, respectively and their standard deviation was ranged from $0.4^{\circ}C$to $0.8^{\circ}C$. Also the relative humidity of the 0% mode was the best controlled one with the average of 76.3% and the standard deviation of 2.1%.

Study of Scattering Mechanism in Oyster Farm by using AIRSAR Polarimetric Data (AIRSAR 다중편파 자료를 이용한 굴 양식장 산란현상 연구)

  • Lee Seung-Kuk;Hong Sang-Hoon;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.303-316
    • /
    • 2005
  • Strong radar returns were observed in oyster sea farms, and coherent interferometric pairs were successfully constructed. Tide height in coastal area is possible to be measured by using interferometric phase and intensity of SAR data. This SAR application technique for measuring the tide height in the near coastal zone can be further improved when applied to double bounce dominant areas. In this paper, we investigate the characteristics of polarimetric signature in the oyster farm structures. Laboratory experiments were carried out using Ku-band according to the target scale. Radar returns from vertical poles are stronger than those from horizontal Pole by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with the height of vertical poles, which implies double bounce is more useful to determine water level than total power. A L-band NASA/IPL airborne SAR (AIRSAR) image was classified into single-, double-bounce, and volume scattering components. It is observed that oyster farms are not always characterized by double bounced scattering. Double bounce is a main scattering mechanism in oyster farms standing above seawater, while single bounce is stronger than double bounce when bottom tidal flats are exposed to air. Ratios of the normalized single to double bounce components in the former and latter cases were 0.46 and 5.62, respectively. It is necessary to use double bounce dominant sea farms for tide height measurement by DInSAR technique.

Design and Fabrication of WLAN / UWB Antenna for Marine High Speed Communication Network System (해양 초고속 통신망 시스템을 위한 WLAN(Wireless Local Area Network) / UWB(Ultra Wide Band)용 안테나 설계 및 제작)

  • Hong, Yong-Pyo;Kang, Sung-Woon;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.489-495
    • /
    • 2018
  • In this paper, we designed and fabricated WLAN / UWB communication antennas operating at 3.3 [GHz] and 5 [GHz] bands in order to effectively use the high-speed communication network system that improved antenna miniaturization, gain and radiation pattern. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. Simulation results show that the return loss is -14.053 [dB] at 3.3 [GHz] and -13.118 [dB] at 5 [GHz]. The gain showed a value of 2.479 [dBi] at 3.3 [GHz] and a value of 3.317 [dBi] at 5 [GHz]. After optimizing it with the CST Microwave Studio 2014 program, which can be 3D-designed, Based on these results, we investigated the performance of antennas by measuring their characteristics. In recent years, WLAN, which is a variety of wireless technologies that are continuously developing, and UWB, which is a communication technology which is increasing in frequency band due to an increase in demand of the technology users, is used for a high speed wireless communication system. Communication seems to be possible.

Bioequivalence and Pharmacokinetics of 70 mg Alendronate Sodium Tablets by Measuring Alendronate in Plasma

  • Yun Min-Hyuk;Woo Jong-Su;Kwon Kwang-Il
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.328-332
    • /
    • 2006
  • The bioequivalence and pharmacokinetics of alendronate sodium tablets were examined by determining the plasma concentration of alendronate. Two groups, consisting of 24 healthy volunteers, each received a 70 mg reference alendronate sodium tablet and a test tablet in a $2{\times}2$ crossover study. There was a 6-day washout period between doses. The plasma alendronate concentration was monitored for 7 h after the dose, using HPLC-Fluorescence Detector (FD). The area under the plasma concentration-time curve from time 0 to the last sampling time at 7 h $(AUC_{0-7h})$ was calculated using the linear-log trapezoidal rule. The maximum plasma drug concentration $(C_{max})$ and the time to reach $C_{max}(T_{max})$ were derived from the plasma concentration-time data. Analysis of variance was performed using logarithmically transformed $AUC_{0-7h}\;and\;C_{max}$, and untransformed $T_{max}$. For the test medication versus the reference medication, the $AUC_{0-7h}\;were\;87.63{\pm}29.27\;vs.\;102.44{\pm}69.96ng\;h\;mL^{-1}$ and the $C_{max}$ values were $34.29{\pm}13.77\;vs.\;38.47{\pm}24.39ng\;mL^{-1}$ respectively. The $90\%$ confidence intervals of the mean differences of the logarithmic transformed $AUC_{0-7h}$ and $C_{max}$ values were log 0.8234-log 1.1597 and log 0.8222-log 1.1409, respectively, satisfying the bioequivalence criteria guidelines of both the US Food and Drug Administration and the Korea Food and Drug Administration. The other pharmacokinetic parameters for the test drug versus reference drug, respectively, were: $t_{1/2},\;1.87{\pm}0.62\;vs.\;1.77{\pm}0.54\;h;\;V/F,\;2061.30{\pm}986.49\;vs.\;2576.45{\pm}1826.05\;L;\;CL/F,\;835.32{\pm}357.35\;vs.\;889.48{\pm}485.87\;L\;h^{-1}; K_{el},\;0.42{\pm}0.14\;vs.\;0.40{\pm}0.18\;h^{-1};\;Ka,\;4.46{\pm}3.63\;vs.\;3.80{\pm}3.64\;h^{-1};\;and\;T_{lag},\;0.19{\pm}0.09\;vs.\;0.18{\pm}0.06\;h$. These results indicated that two alendronate formulations(70-mg alendronate sodium) were biologically equivalent and can be prescribed interchangeably.

Image Processing and Deep Learning Techniques for Fast Pig's Posture Determining and Head Removal (돼지의 빠른 자세 결정과 머리 제거를 위한 영상처리 및 딥러닝 기법)

  • Ahn, Hanse;Choi, Wonseok;Park, Sunhwa;Chung, Yongwha;Park, Daihee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.457-464
    • /
    • 2019
  • The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig's weight is an important issue in productivity perspective. In order to estimate the pig's weight by using the number of pig's pixels from images, acquired from a Top-view camera, the posture determining and the head removal from images are necessary to measure the accurate number of pixels. In this research, we propose the fast and accurate method to determine the pig's posture by using a fast image processing technique, find the head location by using a fast deep learning technique, and remove pig's head by using light weighted image processing technique. First, we determine the pig's posture by comparing the length from the center of the pig's body to the outline of the pig in the binary image. Then, we train the location of pig's head, body, and hip in images using YOLO(one of the fast deep learning based object detector), and then we obtain the location of pig's head and remove an outside area of head by using head location. Finally, we find the boundary of head and body by using Convex-hull, and we remove pig's head. In the Experiment result, we confirmed that the pig's posture was determined with an accuracy of 0.98 and a processing speed of 250.00fps, and the pig's head was removed with an accuracy of 0.96 and a processing speed of 48.97fps.

Central Sarcopenia, Frailty and Comorbidity as Predictor of Surgical Outcome in Elderly Patients with Degenerative Spine Disease

  • Kim, Dong Uk;Park, Hyung Ki;Lee, Gyeoung Hae;Chang, Jae Chil;Park, Hye Ran;Park, Sukh Que;Cho, Sung Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.995-1003
    • /
    • 2021
  • Objective : People are living longer and the elderly population continues to increase. The incidence of degenerative spinal diseases (DSDs) in the elderly population is quite high. Therefore, we are facing more cases of DSD and offering more surgical solutions in geriatric patients. Understanding the significance and association of frailty and central sarcopenia as risk factors for spinal surgery in elderly patients will be helpful in improving surgical outcomes. We conducted a retrospective cohort analysis of prospectively collected data to assess the impact of preoperative central sarcopenia, frailty, and comorbidity on surgical outcome in elderly patients with DSD. Methods : We conducted a retrospective analysis of patients who underwent elective spinal surgery performed from January 1, 2019 to September 30, 2020 at our hospital. We included patients aged 65 and over who underwent surgery on the thoracic or lumbar spine and were diagnosed as DSD. Central sarcopenia was measured by the 50th percentile of psoas : L4 vertebral index (PLVI) using the cross-sectional area of the psoas muscle. We used the Korean version of the fatigue, resistance, ambulation, illnesses, and loss of weight (K-FRAIL) scale to measure frailty. Comorbidity was confirmed and scored using the Charlson Comorbidity Index (CCI). As a tool for measuring surgical outcome, we used the Clavien-Dindo (CD) classification for postoperative complications and the length of stay (LOS). Results : This study included 85 patients (35 males and 50 females). The mean age was 74.05±6.47 years. Using the K-FRAIL scale, four patients were scored as robust, 44 patients were pre-frail and 37 patients were frail. The mean PLVI was 0.61±0.19. According to the CD classification, 50 patients were classified as grade 1, 19 as grade 2, and four as grade 4. The mean LOS was 12.35±8.17 days. Multivariate stepwise regression analysis showed that postoperative complication was significantly associated with surgical invasiveness and K-FRAIL scale. LOS was significantly associated with surgical invasiveness and CCI. K-FRAIL scale showed a significant correlation with CCI and PLVI. Conclusion : The present study demonstrates that frailty, comorbidity, and surgical invasiveness are important risk factors for postoperative complications and LOS in elderly patients with DSD. Preoperative recognition of these factors may be useful for perioperative optimization, risk stratification, and patient counseling.

Feasibility Study on FSIM Index to Evaluate SAR Image Co-registration Accuracy (SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성)

  • Kim, Sang-Wan;Lee, Dongjun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.847-859
    • /
    • 2021
  • Recently, as the number of high-resolution satellite SAR images increases, the demand for precise matching of SAR imagesin change detection and image fusion is consistently increasing. RMSE (Root Mean Square Error) values using GCPs (Ground Control Points) selected by analysts have been widely used for quantitative evaluation of image registration results, while it is difficult to find an approach for automatically measuring the registration accuracy. In this study, a feasibility analysis was conducted on using the FSIM (Feature Similarity) index as a measure to evaluate the registration accuracy. TerraSAR-X (TSX) staring spotlight data collected from various incidence angles and orbit directions were used for the analysis. FSIM was almost independent on the spatial resolution of the SAR image. Using a single SAR image, the FSIM with respect to registration errors was analyzed, then use it to compare with the value estimated from TSX data with different imaging geometry. FSIM index slightly decreased due to the differencesin imaging geometry such as different look angles, different orbit tracks. As the result of analyzing the FSIM value by land cover type, the change in the FSIM index according to the co-registration error was most evident in the urban area. Therefore, the FSIM index calculated in the urban was mostsuitable for determining the accuracy of image registration. It islikely that the FSIM index has sufficient potential to be used as an index for the co-registration accuracy of SAR image.

Study on the Emission Characteristics of Air Pollutants from Agricultural Area (농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구)

  • Kim, Min-Wook;Kim, Jin-Ho;Kim, Kyeong-Sik;Hong, Sung-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

A Study on the Design of Data Collection System for Growing Environment of Crops (작물 근권부 생장 환경 Data 수집 시스템 설계에 관한 연구)

  • Lee, Ki-Young;Jeong, Jin-Hyoung;Kim, Su-Hwan;Lim, Chang-Mok;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.764-771
    • /
    • 2018
  • Domestic and foreign agricultural environments nowadays are undergoing various changes such as aging of agricultural population, increase of earned population, rapid climate change, diversification of agricultural product distribution structure, depletion of water resources and limited cultivation area. In order to respond to various environmental changes in recent agriculture, practical use of Smart Greenhouse to easily record, store and manage crop production information such as crop growing information, growth environment and agriculture work log, Interest is growing. In this paper, we propose a system that collects the situation information necessary for growth such as temperature, humidity, solar radiation, CO2 concentration, and monitor the collected data, which can be measured in the rhizosphere of the crop. We have developed a system that collects data such as temperature, humidity, radiation, and growth environment data, which are measured by data obtained from the rhizosphere measuring section of a growing crop and measured by a sensor, and transmitted to a wireless communication gateway of 400 MHz. We developed the integrated SW that can monitor the rhythm environment data and visualize the data by using cloud based data. We can monitor by graph format and data format for visualization of data. The existing smart farm managed crops and facilities using only the data within the farm, and this study suggested the most efficient growth environment by collecting and analyzing the weather and growth environment of the farms nationwide.

An Analysis of the Rail Wear Measurements for the Prediction of Particulate Matter Emission in Urban Railway (도시철도 미세먼지 발생량 예측을 위한 레일 마모량 분석)

  • Yoon, Cheonjoo;Ko, Huigyu;Bang, Myeongseok;Kwon, Hyeokbin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.339-350
    • /
    • 2018
  • The rail wear measurements in urban underground railway have been analyzed to predict the particulate matter emission caused by rail wear which is one of the major sources of particulate matter emission for underground railway systems. From the rail profile variations measured in the interval of one and half year by dedicated rail wear measuring instrument over the commercial urban underground railway line, 'line-s' which is about 45km long, the characteristics as well as the amount of rail wear have been analyzed after dividing the whole line into about 170 section with radius of curve(R). It has been concluded that the vertical wear parameter V0 and corner wear parameter C0 have been selected to represent the wear amount of straight and curved rail respectively. The amount of rail wear as well as the particulate matter emission by rail wear over the whole line normalized by the rail length as well as the number of train has also been deduced from the relationship between the rail wear parameters and the amount of rail cross-section area.