• 제목/요약/키워드: arctic ocean

검색결과 220건 처리시간 0.024초

Improved Arctic Ocean Oxygen Isotope Stratigraphy Results from the Yermak Plateau (ODP Leg 151 : Site 910A)

  • ;Jochen, Knies;dreas , Mackensen;Jens, Matthiessen;Christoph, Vogt
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 한국제4기학회 2004년도 하계학술대회
    • /
    • pp.51-51
    • /
    • 2004
  • As an important contribution to the planed drilling (IODP) in the central part of the Arctic Ocean, we are currently working on a refined chronostratigraphy for Marine Isotope Stage (MIS) 16 to MIS 2 on the exciting material from ODP Site 910A (Leg 151) which has been recovered from the marginal Eastern Arctic Ocean (the Yermak Plateau - the Atlantic/Arctic Ocean Gateway). Several stratigraphic age fix-points support the interpretation of the stable oxygen. isotope record of planktonic foraminifer N, pachyderma sin. that is punctuated by several short-term meltwater events. We believe that our new record will serve as 'the important correlating tool for establishing a basic stratigraphy for the Quaternary Arctic Ocean as well as for generating high-resolution paleoenvironmental reconstructions in the central Arctic Ocean. Furthermore, our study will provide reference stratigraphic data sets for interpreting the micropaleontological, sedimentological and organic / inorganic - geochemical proxies of the new boreholes that will be drilled on the Lomonosov Ridge(Central Arctic Ocean) in the frame of the "Arctic Coring Expedition' (ACEX, IODP) in summer 2004.

  • PDF

Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

  • Nam, Jong-Ho;Park, Inha;Lee, Ho Jin;Kwon, Mi Ok;Choi, Kyungsik;Seo, Young-Kyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.210-226
    • /
    • 2013
  • Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

Dynamic-Thermodynamic Sea Ice Model: Application to Climate Study and Navigation

  • Makshtas, Alexander;Shoutilin, Serger V.;Marchenko, Alexey V.;Bekryaev, Roman V.
    • Journal of Ship and Ocean Technology
    • /
    • 제8권2호
    • /
    • pp.20-28
    • /
    • 2004
  • A dynamic-thermodynamic sea ice model with 50-km spatial and 24-hour temporal resolution is used to investigate the spatial and long-term temporal variability of the sea ice cover the Arctic Basin. The model satisfactorily reproduces the averaged main characteristics of the sea ice and the sea ice extent in the Arctic Basin and its decrease in early 1990th. At times model allows to suppose partial recovery of sea ice cover in the last years of twenty century. The employment of explicit form for description of ridging gives opportunity to assume that the observed thinning is the result of reduction the intensity of ridging processes and to estimate long-term variability of probability the ridge free navigation in the different parts of the Arctic Ocean including the North Sea Route area.

Reviews on Natural Resources in the Arctic: Petroleum, Gas, Gas Hydrates and Minerals

  • Yoon, Jong-Ryeol;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.51-62
    • /
    • 2001
  • The Arctic consists of numerous sedimentary basins containing voluminous natural resources and two of the world's major oil and gas producing areas. The western Siberia Basin in the Arctic region has the largest petroliferous province with an area of 800 ${\times}$ 1,200 km and produces more than 60% of total Russian oil production. The North Slope of Alaska produces about 20% of the U.S. output, i.e., 11% of the total U.S. consumption. Being small compared to those regions, the Canadian Northwest Territories and the Pechora Basin in Russia produce only fair amount of oil and natural gas. There are also many promising areas in the northern continental shelf of Russia. In addition to Russia, Svalbard and Greenland have been investigated for oil and gas. Gas hydrates are widespread in both permafrost regions and arctic continental shelf areas. The reserves of gas hydrates in the Arctic Ocean are about 20${\sim}$32% of total estimated amounts of gas hydrates in the world ocean. Mineral mining is well developed, especially in Russia. The major centers are located around the Kuznetsk Basin and Noril'sk. They are major suppliers of gold, tin, nickel, copper, platinum, cobalt, iron ore, coal as well as apatite. There are also some minings of lead-zinc in Alaska and Arctic Canada.

  • PDF

Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean (태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교)

  • Kang, Sung-Ho;Kim, Hyun-Choel;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • 제40권4호
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 2 - Compressive Strength, Flexural Strength, and Crystal Structures (쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (2) - 해빙의 압축강도, 굽힘강도 및 결정구조 -)

  • Kim, Dae-Hwan;Park, Young-Jin;Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2012
  • To correctly estimate ice load and ice resistance for a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering ice strength data. The first Korean-made icebreaking research vessel (IBRV), ARAON, had her second sea ice trial in the Arctic Ocean during July and August of 2010. This paper describes the test procedures used to properly obtain sea ice strength data, which provides the basic information on the ship's performance in an ice-covered sea and can be used to estimate the correct ice load and ice resistance on the IBRV ARAON. The data gathered from three sea ice field trials during the Arctic voyage of the ARAON includes the ice compressive strength, flexural strength, and failure strain of sea ice. This paper analyzes the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial in January 2010.

Climatological Variability of Multisatellite-derived Sea Surface Temperature, Sea Ice Concentration, Chlorophyll-a in the Arctic Ocean (북극해에서 다중위성 자료를 이용한 표층수온, 해빙농도 및 클로로필의 장기 변화)

  • Kim, Hyuna;Park, Jinku;Kim, Hyun-Cheol;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • 제33권6_1호
    • /
    • pp.901-915
    • /
    • 2017
  • Recently, global climate change has caused a catastrophic event in the Arctic Ocean, directly and indirectly. The air-sea interaction has caused the significant sea-ice reduction in the Arctic Ocean, and has been accelerating the Arctic warming. Many scientists are worried about the Arctic environment change, suggesting that many of anomalous events will produce direct or indirect biophysical effects on the Arctic. The aim of this study is to understand the inter-annual variability of the Arctic Ocean in wide-view using multi-satellite-derived measurements. Sea surface temperature (SST) and sea ice concentration (SIC) data were obtained from Optimum Interpolation Sea Surface Temperature (OISST) and ECMWF ERA-Interim, respectively. Chlorophyll-a concentration (CHL) was obtained from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Aqua sensor from MODerate resolution Imaging Spectroradiometer (MODIS-Aqua) sensor which has continuously observed since 1998. From 1998 to 2016 summer in the Arctic Ocean which was defined as regions over $60^{\circ}N$ in this study, there were three consequences that CHL increase ($0.15mg\;m^{-3}\;decade^{-1}$), SST warming ($0.43^{\circ}C\;decade^{-1}$) and SIC decrease ($-5.37%\;decade^{-1}$). While SST and SIC highly correlated each other (r = -0.76), a relationship between CHL and SIC was very low ($r={\pm}0.1$) because of data limitations. And a relationship between CHL and SST shows meaningful results ($r={\pm}0.66$) with regional differences.

Safe Speed Estimation of Arctic Ships considering Structural Safety (구조적 안전성을 고려한 빙해선박의 안전 운항속도 평가)

  • Nho, In Sik;Lim, Seung Jae;Kang, Kuk Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제55권3호
    • /
    • pp.236-242
    • /
    • 2018
  • Damage due to ice collision is the most serious threat for the structural safety of ships operating in arctic region. Since such hull damages are usually caused by the collision of floating ice at excessive voyage speed of ships, the authorities responsible for the shipping at arctic sea are required to provide the speed limit for safe voyage, so-called safe speed. In countries near arctic ocean, such as Canada and Russia, empirical methods to determine the safe speed of ships based on their long experience of arctic voyage have been established and applied them in the real arctic navigation. However, in Korea, it is not easy to accumulate the arctic voyage experience and related technical database, so it seems to be a realistic approach to adopt a safe voyage speed estimating method in arctic sea based on the ice collision simulation technology using the nonlinear finite element analysis. The aim of this study is to develop a technique for estimating the safe voyage speed of vessels operating at arctic sea through the ice collision analysis, In order to achieve this goal, the standard procedure of the ice collision analysis is dealt with and example analysis was carried out and the results were considered. To investigate the validity of developed method, POLARIS system proposed by IMO was studied for comparison.