• Title/Summary/Keyword: architecture for safety

Search Result 1,597, Processing Time 0.025 seconds

Guided Missile Initiation Technologies, Now and Tomorrow (유도무기 착화기술의 현황과 발전 전망)

  • 장석태
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2000
  • The comparative evaluation/analysis of the initiation technologies currently being used, and the advanced initiation technologies currently being developed lot the aerospace and defense applications was performed. The evaluation criteria used were the compliance, performance, reliability, safety, and cost. The results clearly indicate that there is no one single initiation technology that will satisfy entire spectrum of initiation system requirements. Each initiation system architecture would require different initiation technologies that will satisfy the overall system performance requirements. However, laser initiation, particularly, the laser diode initiation has been getting more attention in recent years. The laser diode initiation, for most part, eliminates EMI and ESD concerns. In addition, laser diode initiation system can also be designed into relatively small packages, are optically connected systems by very light weight cables, are relatively easily designed to meet variety of initiation system requirements. Due to the these compelling factors, laser diode initiation has potential of becoming common initiation systems for many different aerospace and defense application.

  • PDF

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

A Study on Development Directions of Environment-Friendly Cheonghak Waterfront Park through Surveys

  • Lee, Myung-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.4
    • /
    • pp.315-320
    • /
    • 2008
  • The road construction near the existing lighter's wharf has completed but the lighter's wharf has been still unavailable and neglected. Therefore, the site needs the urgent measures to clean up and properly take advantage of the lighter's wharf. This study sought to improve the regional amenities and revitalize the coastal environment by creating an environment-friendly waterfront park utilizing features of the existing lighter's wharf as part of improvement measures. In addition, surveys were conducted to develop an waterfront park capable of effectively using the land and improving the cleanliness and safety of the coastal scenic beauty, leading to various meaningful opinions on the residents' awareness of the potential park site, the facilities necessary for the park, the development directions of the park and the timing of park development. If an waterfront park is created through the residents' participation, It can share a sustainable utility value of the coastal area. Therefore, this will result in boosting the connection with redevelopment plan for the North Port, along with improving the quality of the residents' life, strengthening Busan's status as a maritime tourism city.

The Design of Remote Monitoring and Warning System for Dangerous Chemicals Based on CPS

  • Kan, Zhe;Wang, Xiaolei
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.632-644
    • /
    • 2019
  • The remote monitoring and warning system for dangerous chemicals is designed with the concept of the Cyber-Physical System (CPS) in this paper. The real-time perception, dynamic control, and information service of major hazards chemicals are realized in this CPS system. The CPS system architecture, the physical layer and the applacation layer, are designed in this paper. The terminal node is mainly composed of the field collectors which complete the data acquisition of sensors and video in the physical layers, and the use of application layer makes CPS system safer and more reliable to monitor the hazardous chemicals. The cloud application layer completes the risk identification and the prediction of the major hazard sources. The early intelligent warning of the major dangerous chemicals is realized and the security risk images are given in the cloud application layer. With the CPS technology, the remote network of hazardous chemicals has been completed, and a major hazard monitoring and accident warning online system is formed. Through the experiment of the terminal node, it can be proved that the terminal node can complete the mass data collection and classify. With this experiment it can be obtained the CPS system is safe and effective. In order to verify feasible, the multi-risk warning based on CPS is simulated, and results show that the system solves the problem of hazardous chemicals enterprises safety management.

Rocking Behavior of Steel Dampers according to Strut Shapes and Heights of Steel dampers (강재 댐퍼의 스트럿 형상과 높이에 따른 록킹 거동)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • In this study, the seismic strengthening technique considering the rocking behavior of the wall was developed. The rocking system rotates left and right around the vertical axis of the wall. The development system is a method of dissipating energy by installing a damper which was attached at a large displacement portion. The damper was made of a steel material, and the shape and height of the strut were selected as variables. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. As a result of comparing the abilities according to I and S type strut shapes, it was evaluated that S type has better seismic performance.

Optimization of Joint Hole Position Design for Composite Beam Clamping (복합재 빔 체결을 위한 체결 홀 위치 최적화)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • In recent years, the use of composite structures has become commonplace in various fields such as aerospace, architecture, and civil engineering. In this study, A method is proposed to find optimal position of bolt hole for fastening of composite structure. In the case of composites, stress distribution is very complicated, and design optimization based on this phenomenon increases difficulty. In selecting the optimum position of the bolt hole, the response surface method(rsm), which is a method of optimization, was applied. A response surface was created based on design points by multiple finite element analyzes. The position of the bolt hole that minimizes the stress when bolting on the response surface was found. The distribution of the stress at the position of the optimal hole was much lower than that of the initial design. Based on the results of this study, it is possible to increase the design safety factor of the structure by appropriately selecting the position of the bolt hole according to various load types when designing the structure and civil structure.

Modeling and simulation of large crowd evacuation in hazard-impacted environments

  • Datta, Songjukta;Behzadan, Amir H.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.91-118
    • /
    • 2019
  • Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Evaluation of Reinforcement Detail Effect on Coupling Beams (연결보의 배근 상세 효과 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • A study was conducted to secure structural performance as well as improve workability by improving the reinforcement details of special shear wall and coupling beams. Based on the specimen in which the existing diagonal bundle reinforcement and shear reinforcement were placed, the specimens replaced with thick diagonal reinforcing bars and the specimens replaced with horizontal reinforcing bars were selected as variables. As a result of the experiment, the specimen, which replaced the existing diagonal reinforcement with a thick-diameter reinforcement, showed a similar behavior to that of the basic specimen, and it was evaluated that it can be applied as an alternative to the details.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.