• Title/Summary/Keyword: architectural model

Search Result 1,905, Processing Time 0.026 seconds

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Collaborative Process to Facilitate BIM-based Clash Detection Tasks for Enhancing Constructability

  • Seo, Jung-Ho;Lee, Baek-Rae;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.299-314
    • /
    • 2012
  • One of reasons for introducing Building Information Modeling (BIM) is to support clash detection tasks by means of a 3D product model. In the conventional construction project process, clashes have been found during construction phase. However, it can cause cost overrun and time delay. In order to investigate and correct clash detections at design phase, relevant business process and guide for this task should be provided. This study aims to identify hindrances in clash detection tasks at the design phase and analyze its current process using IDEF0 model. Despite the convenience of IDEF0 as a systems analysis tool, professional participants might have difficulties to understand their own tasks according to business process. For this reason, in this research, Business Process Model and Notation (BPMN) is introduced to provide ideal process and required decision making governance. The provide BPMN model will provide insights for a BIM-based collaborative environment to enhance the constructability through the construction project.

Architectural acoustics design of the NAMSADANG exclusive use theaters that SCALE MODEL Design (SCALE MODEL설계를 적용한 남사당 전용공연장의 건축음향 설계)

  • Kim, Jung-Joong;Sohn, Jang-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.33-41
    • /
    • 2008
  • Architectural acoustics design of Namsadang exclusive use theaters should be designed to utilize variously to performance space that can fill flavor and taste of Namsadang performance of the Namsadang six yards. Also, analyze special quality that is sound enemy who follow in sound-absorbing materials fare arrangement of innards that is design material of architectural acoustics laying stress on tradition, use purpose and disappointment size that Namsadang exclusive use theaters seeks on the basis of specific space theme that is experience, disappointment form, seat and passageway Wall and ceiling etc. research and sound and meaning of a character wave motion powerful engineering phenomenon and reduction reverberation loss that is happened from indoor manufacturing thing reduction SCALE model of oval structure research and background of AL composition absorbing material of perforate 25% to heighten acoustic absorptivity of practical use internal organs sound absorption material emir quality sound-absorbing materials insert and layer of air most suitable reverberation time of Namsadang exclusive use theaters that 2.2m volume is $42,218\;m^3$ to become 1.2Sec architectural acoustics design do.

  • PDF

Visualization Based Building Anatomy Model for Construction Safety Education

  • Pham, Hai Chien;Le, Quang Tuan;Pedro, Akeem;Park, Chan Sik
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.430-434
    • /
    • 2015
  • Safety education at the tertiary level prepares students to enter construction industry with adequate safety knowledge; then accidents can be prevented proactively. However, safety subject has not been paid adequate attention in universities and most institutional safety programs consider safety matters in isolation. Meanwhile, anatomical theory in the medicine field has been successfully adopted and proved potential advantageous in various scientific disciplines. With this regard, this study proposes a visualization based Building Anatomy Model (BAM) for construction safety education, which utilizes the anatomical theory in order to improve student's safety knowledge and practical skill. This BAM consists of two modules: 1) Knowledge Acquisition Module (KAM) aims to deliver safety knowledge to students through building anatomy models; 2) Practical Experience Module (PEM) where students safely perform construction activities by using the system to improve safety skill. The system trial is validated with virtual scenarios derived from real accidents cases. This study emphasizes the visualization based building anatomy model would be a powerful pedagogical method to provide effectively safety knowledge and practical skill for students, as a result, safety competence of students would be enhanced.

  • PDF

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

A Digital Design Curriculum Model in Architectural Design Studio (건축 설계교육에서 디지털 설계 커리큘럼 모델 제안)

  • Kim, Myung-Sun;Choi, Soon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5314-5320
    • /
    • 2011
  • The purpose of this study is to draw the digital design curriculum in architectural design studio. For this study, works using digital design process in professional and academic projects were investigated. Digital design curriculum is consisted of 3 steps; fundamental, intensive and advanced courses. The fundamental course acquires capability for raising architectural thought through digital media. The intensive course acquires capability for raising architectural design process. Finally, the advanced course acquires capability for raising synthesis design works and professional abilities in architectural design. It is also a urgent need of unified roadmap about digital design curriculum for architectural design education in Korea.

Determination of Combined Hardening Model Parameters to Simulate the Inelastic Behavior of High-Strength Steels (고강도 강재의 비탄성 거동을 모사하기 위한 복합경화모델 파라미터 결정)

  • Cho, EunSeon;Cho, Jin Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2023
  • The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.

A Production-Installation Simulation Model of Free-Form Concrete Panels

  • Lim, Jeeyoung;Lee, Donghoon;Na, Youngju;Lim, Chaeyeon;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • Demand on free-form buildings is gradually increasing, yet owing to the difficulty of production-installation work, several problems occur in the construction phase upon construction of a building, including the increased cost and construction duration, and reduced constructibility. To solve these problems, a techonology to produce FCP using a CNC(Computerized Numeric Control) machine is developed. The technology is that the information of designed free-form buildings to the CNC machine is transferred, and the transferred information is used for RTM(Rod-Type Mold, the mold shaped by back-up rods) and PCM(Phase Change Material) shaping, and the shaped RTM and PCM have the role of molds to produce FCP. Construction duration and project cost are limited in building sites, so the efficiency of processes like production-installation of FCP for application of the technology is significant. Since it is almost impossible to change the production-installation process at the construction phase when they are established, process should be deliberately decided. Therefore, the purpose of the study is to propose a production-installation simulation model of free-form concrete panels, in aspect of PCM. This paper is establishing the process for production-installation of FCP, estimating time required by each construction type and proposing a time simulation model that changes according to various constraints based on the analyses. With the time simulation model, it will be possible to build a cost model and to review the optimal construction duration and project cost.

  • PDF

Damage Detection at Welded Joint of Two-Dimensional Plane Model

  • Chung, Chang-Yong;Eun, Hee-Chang;Seo, Eun-Kyoung
    • Architectural research
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • Damage detection algorithms based on a one-dimensional beam model can detect damage within a beam span caused by flexure only but cannot detect damage at a joint with prescribed boundary conditions or at the middle part of a beam section where the neutral axis is located. Considering the damage at a welded joint of beam elements in steel structures and modeling the damage with twodimensional plane elements, this study presents a new approach to detecting damage in the depth direction of the joint and beam section. Three damage scenarios at the upper, middle, and lower parts of a welded joint of a rectangular symmetric section are investigated. The damage is detected by evaluating the difference in the receptance magnitude between the undamaged and damaged states. This study also investigates the effect of measurement locations and noise on the capability of the method in detecting damage. The numerical results show the validity of the proposed method in detecting damage at the beam's welded joint.

Modeling interply debonding in laminated architectural glass subject to low velocity impact

  • Flocker, F.W.;Dharani, L.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.485-496
    • /
    • 1998
  • Standard finite element wave propagation codes are useful for determining stresses caused by the impact of one body with another; however, their applicability to a laminated system such as architectural laminated glass is limited because the important interlayer delamination process caused by impact loading is difficult to model. This paper presents a method that allows traditional wave propagation codes to model the interlayer debonding of laminated architectural glass subject to low velocity, small missile impact such as that which occurs in severe windstorms. The method can be extended to any multilayered medium with adhesive bonding between the layers. Computational results of concern to architectural glazing designers are presented.