• Title/Summary/Keyword: architectural engineering design

Search Result 2,069, Processing Time 0.027 seconds

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

The Search for Study on the Construction Process and Changes in the Landscape Plants of the Pasanseodang ('파산서당'의 영건과정과 조경식물 변화상 탐색)

  • Joo, Been;Choi, Hayoung;Shin, Sangsup
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.48-65
    • /
    • 2018
  • The authors of this paper aim to make a record of the construction process, its symbolic meaning, and the changes in the status of the landscape plants at the Pasanseodang according to the Report on the Pasanseodang written by Park Gyu-hyun in 1874. First, the construction of Samgahun Pavilion, which is located in Myo-ri, Habin-myun, Dalsung-gun, Daegu, took about 90 years and spanned the lifetimes of Park Sungsoo, an 11th-generation descendant of Park Paengnyun (1417~1456) through to Park Kyuhyun, a 14th-generation descendant. It was called the shape of dragon, with its head facing the tail (回龍顧尾形), in feng shui. Second, the village of Pahwoe was founded in 1769, the 45th year of the reign of King Yeongjo, by Park Sungsoo for the purpose of socializing with his friends at his thatched home, and was named after his own courtesy name (Samgahun). Park Kwangseok, the second son of Park Sungsoo, built the sarangchae in 1826 and the anchae in 1869 after his marriage (in 1783). Then, Park Kyuhyun, the grandson of Park Kwangseok, built the pond and planted it with lotus flowers, and built the Hayeopjeong in 1874. The Pasanseodang, as the precursor of the Hayeopjeong, may be related with the name of the hillside region behind Samgahun. Third, a quadrangular-shaped pond with a length of 21m and a width of 15m was also built and planted with lotus flowers. In the center of the pond is a small round island that reflects the world view of the Chosun dynasty, i.e. that the sky is round and the landmass is quadrangular. Meanwhile, the name of the Hayeopjeon reflects the value system of aristocrats who lived a life of leisure and artistic indulgence. They called the eastern room "Yeeyeonhun" (怡燕軒) and the western room "Mongyangjae" (蒙養齋), names which embody their wishes for a good life as a member of the nobility and a bright future for one's descendants. Fourth, in Confucian terms, the authors infer the points of view reflected in the kinds of trees that were planted according to Confucian norms (pine tree, lotus, bamboo), the living philosophy of sustainability (willow), the ideology of seclusion and the search for peace of mind (bamboo), and relief efforts for the poor and a life of practicality (chestnut, oak, wild walnut, lacquer). The authors assert that this way of planting trees was a highly effective design feature of landscape architecture that drew on the locational and symbolic significance of the Seodang. Fifth, the majority of the trees that were initially planted withered and were replaced with different species, except for the locust and lotus, at this point. Nevertheless, a review of the process of construction, symbolic meaning, and original architectural landscape of the Samgahun is of value in demonstrating the extended symbolic meaning of their descendants in terms of the practical loss of the function of the Seodang, the values of Feng Sui (red in the east, white in the west, based on the principles of Feng Sui), the function of repelling evils spirits (kalopanax, trifoliate orange), aesthetic and practical values (sweetbrier, apricot, pear, peach, and oriental oak trees), and the prosperity of the family and the timeless value of honest poverty (silk, crape myrtle, and yew trees).

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

Conflicts between the Conservation and Removal of the Modern Historic Landscapes - A Case of the Demolition Controversy of the Japanese General Government Building in Seoul - (근대 역사 경관의 보존과 철거 - 구 조선총독부 철거 논쟁을 사례로 -)

  • Son, Eun-Shin;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • In recent years, there has been a tendency to reuse 'landscapes of memory,' including industrial heritages, modern cultural heritages, and post-industrial parks, as public spaces in many cities. Among the various types of landscapes, 'modern historic landscapes', which were formed in the 19th and 20th centuries, are landscapes where the debate between conservation and removal is most frequent, according to the change of evaluation and recognition of modern history. This study examines conflicts between conservation and removal around modern historic landscapes and explores the value judgment criteria and the process of formation of those landscapes, as highlighted in the case of the demolition controversy of the old Japanese general government building in Seoul, which was dismantled in 1995. First, this study reviews newspaper articles, television news and debate programs from 1980-1999 and some articles related to the controversy of the Japanese general government building. Then it draws the following six factors as the main issues of the demolition controversy of the building: symbolic location, discoveries and responses of new historical facts, reaction and intervention of a related country, financial conditions, function and usage of the landscape, changes of urban, historical and architectural policies. Based on these issues, this study examines the conflicts between symbolic values that play an important role in the formation of modern historic landscapes and determines conservation or removal, and the utility of functional values that solve the problems and respond to criticisms that arise in the process of forming the modern historic landscape. Especially, it is noted that the most important factor that makes the decision is the symbolic values, although the determination of the conservation or removal of modern historic landscapes has changed according to changes in historical perceptions of modern history. Today, the modern historic landscape is an important site for urban design, and still has historical issues to be agreed upon and addressed. Thi study has contemporary significance from the point that it divides the many values of modern historic landscapes into symbolic values and functional values, evaluates these, and reviews the background social context.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Development Strengths of High Strength Headed Bars of RC and SFRC Exterior Beam-Column Joint (RC 및 SFRC 외부 보-기둥 접합부에 대한 고강도 확대머리 철근의 정착강도)

  • Duck-Young Jang;Jae-Won Jeong;Kang-Seok Lee;Seung-Hun Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.94-101
    • /
    • 2023
  • In this study, the development performance of the head bars, which is SD700, was experimentally evaluated at the RC (reinforced concrete) or SFRC (steel fiber reinforced concrete external beam-column joint. A total of 10 specimens were tested, and variables such as steel fibers, length of settlement, effective depth of the beam, and stirrups of the column were planned. As a result of the experiment, the specimens showed side-face blowout, concrete breakout, and shear failure depending on the experimental variables. In the RC series experiments with development length as a variable, it was confirmed that the development strength increased by 26.5~42.2% as the development length increased by 25-80%, which was not proportional to the development length. JD-based experiments with twice the effective depth of beams showed concrete breakout failure, reducing the maximum strength by 31.5% to 62% compared to the reference experiment. The S-series experiment, in which the spacing of the shear reinforcement around the enlarged head reinforcement was 1/2 times that of the reference experiment, increased the maximum strength by 8.4 to 9.7%. The concrete compressive strength of SFRC was evaluated to be 29.3% smaller than the concrete compressive strength of RC, but the development strength of SFRC specimens increased by 7.3% to 12.2%. Accordingly it was confirmed that the development performance of the head bar was greatly improved by reinforcing the steel fiber. Considering the results of 92% and 99% of the experimental maximum strength of the experiment arranged with 92% and 110% of the KDS-based settlement length, it is judged that the safety rate needs to be considered even more. In addition, it is required to present a design formula that considers the effective depth of the beam compared to the development length.