• Title/Summary/Keyword: architectural design process

Search Result 941, Processing Time 0.028 seconds

Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate (고강도 콘크리트 말뚝과 기초판 접합부의 최적 철근보강량 산정)

  • Park, Jong-Bae;Sim, Young-Jong;Chun, Young-Soo;Park, Seong-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Method of protruding steel bar embedded in PHC pile for connecting with foundation plate is an intermediate form of fixed and hinged connection and has often been used in architectural structures such as apartment complex. However, mechanical properties of this method have not been proved and its construction process is not simple. In this study, therefore, by analyzing previous research and by considering ratio of steel bar and concrete in PHC pile, which is minimum reinforcement of rebar, the newly optimized method of reinforcing joint of PHC pile and foundation plate is suggested with respect to PHC pile type (PHC 450, PHC 500, and PHC 600). To assess mechanical properties (ultimate tensile and shear strength) of joint of PHC pile and foundation plate, full scale experimental tests are performed. As a result, all cases are satisfied with required design criteria and can be practically applied. Our results indicate that reduction of rebar reinforcement compared to previous method would lead cost saving in PHC pile construction.

How do they Make Libraries Green?: A Case Based Study on Building Green Libraries (녹색도서관 사례분석을 기반으로 한 국내 녹색도서관 구축방향에 관한 연구)

  • Ahn, In-Ja;Kwak, Chul-Wan;Noh, Young-Hee;Park, Mi-Young
    • Journal of Information Management
    • /
    • v.43 no.1
    • /
    • pp.135-158
    • /
    • 2012
  • Since the 1990s, discussions regarding green libraries started in the U.S.A, in the name of 'library and the environment', 'Green librarians', 'constructing of environmental sources', 'noise and library', 'building libraries as an environmental alternative' and etc. Currently, green libraries certified by an evaluation system are more than 50. This study proposes a direction to build a green library. The study analyzes national and international green libraries certified by the evaluation system. The cases are analyzed based on the six evaluation factors in the LEED certification system; Sustainable Site, Water Efficiency, Energy and Atmosphere, Material and Resources, Indoor Environmental Quality, Innovation and Design Process. Since the evaluation system focuses mainly on the architectural aspects, there was a need of expanding the concept of eco-friendly in this research. The newly expanded eco-friendly concept includes services, content, and supplies of libraries.

Development of a Mobile Game for Smart Education of Rebar Work (철근공사 스마트 학습을 위한 모바일 게임 개발)

  • Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2022
  • In this study, to improve educational motivation and learning outcomes, a mobile app using game elements was developed, and the effect of its application in rebar work education was analyzed. Using the 4F(Figure out-Focus-Fun design-Finalize) process, which is a game development model, a mobile learning app for rebar work was developed that considers the characteristics of college students familiar with smartphone use, and the app was developed in a manner that utilizes game mechanics such as learning missions and points to stimulate a learner's interest and improve educational motivation. The results show that the proposed app for rebar work is positively evaluated in terms of interface style, perceived usefulness, perceived ease of use, perceived enjoyment, attitude toward using, and intention to use. Therefore, it can be concluded that using the learning game app for rebar work in classes can contribute to improving a learner's performance in various aspects.

A Study on the Construction Cost Risk through Analyzing the Actual Cost of Public Apartment (공공주택 실적공사비 분석을 통한 공사비 리스크에 관한 연구)

  • Yoon, Woo-Sung;Go, Seong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.65-78
    • /
    • 2011
  • Construction business, which is complex and long-term business, requires accurate estimation and verification in construction costs and payment procedure from project planning to the completion of construction phase. And more importantly, it is necessary to investigate and determine the risk factors related to construction costs during the entire process including design planning, construction drawings, and quantity calculating. But, currently, it is not seem to be adequate to cope with the risk and increased construction costs against the operational budget in terms of actual costs when screening and estimating the bidding cost of public apartment. Therefore, this study selected and analyzed 40 sites' report of construction completion account from 2004 to 2010 focused on the adequacy on the modification of contract and design planning and on the complication of the budget in the beginning of the project. This study deducted various risk causes and results by analyzing actual costs according to year, architectural area, region, construction cost and sale/lease classification. We could find out construction risk according to annual variation of government policy and economy, and also deducted risk items by construction characteristic according to region and architectural area. Study result, we first found out the problems of lowest price award system according to the construction costs. The weight of the cost increase risk was analyzed that subcontract and material costs are very high. Roof and tile work were analyzed highly in subcontract cost risk and reinforcing bar and cement were analyzed highly in material cost risk, among direct construction cost. Finally, this study results could be used in comparing the categories of the construction costs made by specific construction process, belonging to the construction costs, with the operational budget made in the beginning of the project that can enable to grasp unpredictable risks over the construction costs and making quantitative analysis for it through analyzing the range of fluctuation and variations led by the fluctuations in the actual construction costs.

Calculation Model for Function & Cost Score based on Normalization Method in Design VE (정규화 기법 기반의 설계VE 기능 및 비용 점수 산출 모델)

  • Lee, Jongsik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.98-106
    • /
    • 2015
  • VE aims at reduction in a budget, improvement of function, structural safety and quality security for public construction projects. However, there is possibility for the structural safety and quality security review to be insufficient because related regulations are mostly composed of analysis on economic efficiency of design. In addition, due to the misconception about VE as a cost saving methodology, an alternative is being presented which still focuses mainly on cost saving, but with no objective evaluation of function related to cost. In order to improve this, the government adopted the reduction of life cycle cost and proposal of value improvement, and let people specify the cost and function of the original plan versus the alternative plan, and the value changes between them. However, it is written mainly into practical convenience rather than theoretical basis since a specific way is not suggested. The current method sets a different starting point by applying the attributional difference of function and cost. Furthermore, an evaluation standard for correlating is an important element in rational decision making for assessing and choosing an alternative. This paper analyzes the process and method of function & cost scoring when performing VE and suggests a mathematical normalization model in order to support rational decision making when selecting an optimum plan.

Development of 3-Dimensional Rebar Detail Design and Placing Drawing System (3차원 배근설계 및 배근시공도 작성 자동화 시스템 개발)

  • Choi, Hyun-Chul;Lee, Yunjae;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • The rebar detailing is an important work influencing the final performance and quality of RC structures. But it is one of the most irrational and illogical activity in construction site. Many groups of workers, including main contractors, structural engineers, shop drawers, rebar fabricators, and etc., participate in this activity. A loosely-organized process for this activity is apt to produce a big amount of rebar loss or even degraded structures. A 3-dimensional rebar auto-placing system, called as Rebar Hub, has been designed and implemented in this research. Rebar Hub provides a totally integrated service from 3D structural modeling of buildings to rebar auto-placing considering anchorage, splice, and the length of ordered rebar. In addition, Rebar Hub can recognize the 2D drawing CAD files and then build 3D structural models which are used for the start point of 3D rebar auto-placing. After rebar auto-placing, each members of the 3D structural model have rebar information belonging to them. It means that the rebar information can be used for the afterward works such as quantity-survey, manufacturing and fabrication of rebars. Rebar Hub is showing outstanding performance while applying to practical projects. It has almost five times productivity and reduces the rebar loss up to 3~8% of the initially-surveyed amount of rebar.

SysML-Based System Modeling for Design of BIPV Electric Power Generation (건물일체형 태양광 시스템의 전력발전부 설계를 위한 SysML기반 시스템 모델링)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.578-589
    • /
    • 2018
  • Building Integrated Photovoltaic (BIPV) system is a typical integrated system that simultaneously performs both building function and solar power generation function. To maximize its potential advantage, however, the solar photovoltaic power generation function must be integrated from the early conceptual design stage, and maximum power generation must be designed. To cope with such requirements, preliminary research on BIPV design process based on architectural design model and computer simulation results for improving solar power generation performance have been published. However, the requirements of the BIPV system have not been clearly identified and systematically reflected in the subsequent design. Moreover, no model has verified the power generation design. To solve these problems, we systematically model the requirements of BIPV system and study power generation design based on the system requirements model. Through the study, we consistently use the standard system modeling language, SysML. Specifically, stakeholder requirements were first identified from stakeholders and related BIPV standards. Then, based on the domain model, the design requirements of the BIPV system were derived at the system level, and the functional and physical architectures of the target system were created based on the system requirements. Finally, the power generation performance of the BIPV system was evaluated through a simulated SysML model (Parametric diagram). If the SysML system model developed herein can be reinforced by reflecting the conditions resulting from building design, it will open an opportunity to study and optimize the power generation in the BIPV system in an integrated fashion.

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.

Development of a Feasibility Evaluation Model for Apartment Remodeling with the Number of Households Increasing at the Preliminary Stage (노후공동주택 세대수증가형 리모델링 사업의 기획단계 사업성평가 모델 개발)

  • Koh, Won-kyung;Yoon, Jong-sik;Yu, Il-han;Shin, Dong-woo;Jung, Dae-woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.22-33
    • /
    • 2019
  • The government has steadily revised and developed laws and systems for activating remodeling of apartments in response to the problems of aged apartments. However, despite such efforts, remodeling has yet to be activated. For many reasons, this study noted that there were no tools for reasonable profitability judgements and decision making in the preliminary stages of the remodeling project. Thus, the feasibility evaluation model was developed. Generally, the profitability judgements are made after the conceptual design. However, decisions to drive remodeling projects are made at the preliminary stage. So a feasibility evaluation model is required at the preliminary stage. Accordingly, In this study, a feasibility evaluation model was developed for determining preliminary stage profitability. Construction costs, business expenses, financial expenses, and generally sales revenue were calculated using the initial available information and remodeling variables derived through the existing cases. Through this process, we developed an algorithm that can give an overview of the return on investment. In addition, the preliminary stage feasibility evaluation model developed was applied to three cases to verify the applicability of the model. Although applied in three cases, the difference between the model's forecast and actual case values is less than 5%, which is considered highly applicable. If cases are expanded in the future, it will be a useful tool that can be used in actual work. The feasibility evaluation model developed in this study will support decision making by union members, and if the model is applied in different regions, it will be expected to help local governments to understand the size of possible remodeling projects.

Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer (Sloped-LOM 방식 3D 프린터를 이용한 비정형 EPS 거푸집 제작 공법 개발)

  • Ahn, Heejae;Lee, Dongyoun;Ji, Woojong;Lee, Woojae;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.171-181
    • /
    • 2020
  • Recently, free-formed construction technology is becoming a new measure of representing technological superiority and sociocultural ingenuity. However, the CNC processing technology utilizing the existing wood and iron form has limitations in terms of the manufacturing time and material cost. Therefore, in this study, the method and process of manufacturing free-formed EPS form using S-LOM-based 3D printing technology were suggested. Furthermore, through the mock-up test, a comparative analysis of the manufacturing time and precision with CNC milling technology was conducted. The results show that S-LOM-based 3D printing technology has reduced manufacturing time about 57.4% compared to CNC milling technology during the free-formed EPS form manufacturing process. In addition, compared to the design drawings, the maximum error value was 20.5mm, proving the applicability of S-LOM-based 3D printing technology. The results of this study are expected to contribute to the improvement of S-LOM method and the activation of S-LOM method by verifying the applicability of S-LOM-based 3D printing technology.