• 제목/요약/키워드: architectural computing

검색결과 98건 처리시간 0.029초

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

맞춤형 클라우드 BIM 서비스 요구기능 도출에 관한 연구 - 의료시설 설계를 중심으로 - (A Study on Demand Function of Customized Cloud BIM Service - Focused on Medical Facility Design -)

  • 정성호;이병수;최윤기
    • 대한건축학회논문집:계획계
    • /
    • 제35권7호
    • /
    • pp.53-61
    • /
    • 2019
  • Cloud BIM, which incorporates cloud computing technology and BIM technology, is increasingly used in construction. In particular, the recent trend of cloud services in IT field is to provide customized cloud services according to the characteristics of users. These changes are also linked to the cloud BIM, which is emerging in the construction industry. However, cloud BIM researches and commercial technologies that are currently underway do not reflect these trends, and they provide services through generalized management functions in construction projects. In order to solve these problems, a new type of customized cloud BIM service is needed that can provide cloud services by reflecting the characteristics of the project, customization based on the user's work, and providing the knowledge service. Therefore, this study aims to derive the system requirement function that should be preceded for implementing the customized cloud BIM service, and the target project is selected as the medical facility.

함정용 전투체계 아키텍처 개선을 위한 실시간 운영체제 적용방안 연구 (A Study on Real-Time Operating Systems for Architectural Improvement of Naval Combat Systems)

  • 김점수;장혜민;주정현;이균정
    • 한국군사과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.260-267
    • /
    • 2013
  • A combat system for navy's battleship is a system of systems who supports naval indigenous operations by integrating and inter-operating many different kind of weapon and non-weapon systems, which has characteristics of large-scale complex computing system. This paper considers a characteristics of naval combat system which has been developed by domestic technology and suggests a way to improve future naval combat system in terms of computing architecture by applying commercial real-time operating system technologies. This paper also provides an evaluation criteria for combat system adaptability of real-time operating systems.

Scratchpad Memory Architectures and Allocation Algorithms for Hard Real-Time Multicore Processors

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.51-72
    • /
    • 2015
  • Time predictability is crucial in hard real-time and safety-critical systems. Cache memories, while useful for improving the average-case memory performance, are not time predictable, especially when they are shared in multicore processors. To achieve time predictability while minimizing the impact on performance, this paper explores several time-predictable scratch-pad memory (SPM) based architectures for multicore processors. To support these architectures, we propose the dynamic memory objects allocation based partition, the static allocation based partition, and the static allocation based priority L2 SPM strategy to retain the characteristic of time predictability while attempting to maximize the performance and energy efficiency. The SPM based multicore architectural design and the related allocation methods thus form a comprehensive solution to hard real-time multicore based computing. Our experimental results indicate the strengths and weaknesses of each proposed architecture and the allocation method, which offers interesting on-chip memory design options to enable multicore platforms for hard real-time systems.

Toward Generic, Immersive, and Collaborative Solutions to the Data Interoperability Problem which Target End-Users

  • Sanchez-Ruiz, Arturo;Umapathy, Karthikeyan;Hayes, Pat
    • Journal of Computing Science and Engineering
    • /
    • 제3권2호
    • /
    • pp.127-141
    • /
    • 2009
  • In this paper, we describe our vision of a "Just-in-time" initiative to solve the Data Interoperability Problem (a.k.a. INTEROP.) We provide an architectural overview of our initiative which draws upon existing technologies to develop an immersive and collaborative approach which aims at empowering data stakeholders (e.g., data producers and data consumers) with integrated tools to interact and collaborate with each other while directly manipulating visual representations of their data in an immersive environment (e.g., implemented via Second Life.) The semantics of these visual representations and the operations associated with the data are supported by ontologies defined using the Common Logic Framework (CL). Data operations gestured by the stakeholders, through their avatars, are translated to a variety of generated resources such as multi-language source code, visualizations, web pages, and web services. The generality of the approach is supported by a plug-in architecture which allows expert users to customize tasks such as data admission, data manipulation in the immersive world, and automatic generation of resources. This approach is designed with a mindset aimed at enabling stakeholders from diverse domains to exchange data and generate new knowledge.

ARCHITECTURAL ANALYSIS OF CONTEXT-AWARE SYSTEMS IN PERVASIVE COMPUTING ENVIRONMENT

  • Udayan J., Divya;Kim, HyungSeok
    • 한국HCI학회논문지
    • /
    • 제8권1호
    • /
    • pp.11-17
    • /
    • 2013
  • Context aware systems are those systems that are aware about the environment and perform productive functions automatically by reducing human computer interactions(HCI). In this paper, we present common architecture principles of context-aware systems to explain the important aspects of context aware systems. Our study focuses on identifying common concepts in pervasive computing approaches, which allows us to devise common architecture principles that may be shared by many systems. The principles consists of context sensing, context modeling, context reasoning, context processing, communication modelling and resource discovery. Such an architecture style can support high degree of reusability among systems and allows for design flexibility, extensibility and adaptability among components that are independent of each other. We also propose a new architecture based on broker-centric middleware and using ontology reasoning mechanism together with an effective behavior based context agent that would be suitable for the design of context-aware architectures in future systems. We have evaluated the proposed architecture based on the design principles and have done an analyses on the different elements in context aware computing based on the presented system.

  • PDF

A Digital Forensic Framework Design for Joined Heterogeneous Cloud Computing Environment

  • Zayyanu Umar;Deborah U. Ebem;Francis S. Bakpo;Modesta Ezema
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.207-215
    • /
    • 2024
  • Cloud computing is now used by most companies, business centres and academic institutions to embrace new computer technology. Cloud Service Providers (CSPs) are limited to certain services, missing some of the assets requested by their customers, it means that different clouds need to interconnect to share resources and interoperate between them. The clouds may be interconnected in different characteristics and systems, and the network may be vulnerable to volatility or interference. While information technology and cloud computing are also advancing to accommodate the growing worldwide application, criminals use cyberspace to perform cybercrimes. Cloud services deployment is becoming highly prone to threats and intrusions. The unauthorised access or destruction of records yields significant catastrophic losses to organisations or agencies. Human intervention and Physical devices are not enough for protection and monitoring of cloud services; therefore, there is a need for more efficient design for cyber defence that is adaptable, flexible, robust and able to detect dangerous cybercrime such as a Denial of Service (DOS) and Distributed Denial of Service (DDOS) in heterogeneous cloud computing platforms and make essential real-time decisions for forensic investigation. This paper aims to develop a framework for digital forensic for the detection of cybercrime in a joined heterogeneous cloud setup. We developed a Digital Forensics model in this paper that can function in heterogeneous joint clouds. We used Unified Modeling Language (UML) specifically activity diagram in designing the proposed framework, then for deployment, we used an architectural modelling system in developing a framework. We developed an activity diagram that can accommodate the variability and complexities of the clouds when handling inter-cloud resources.

응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석 (Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method)

  • 김한수;위해환
    • 콘크리트학회논문집
    • /
    • 제26권5호
    • /
    • pp.599-606
    • /
    • 2014
  • 초고층 건물의 연쇄붕괴는 큰 피해를 발생시키므로 초고층 건물의 설계 단계에서 반드시 고려해야할 사항이다. 유한요소법을 이용한 초고층 건물의 연쇄붕괴 해석은 해석 시간이 지나치게 많이 소요되어 사실상 불가능하다고 할 수 있다. 본 논문에서는 유한 요소법의 대안으로 응용 요소법을 이용한 연쇄붕괴 해석의 유용성을 살펴보았다. 초고층 건물의 연쇄붕괴 해석을 위하여 규모 축소 모델링 방안을 제안하였다. 제안한 규모 축소 모델링 방안은 폭파하중의 직접적인 피해를 받는 부분만 해석모델에 포함하고 제외되는 나머지 부분의 질량과 전달하중 그리고 강성은 하나의 층에 집중시키는 방법이다. 20층 고층 철근콘크리트 건물에 대한 전체 모델과 축소된 모델을 세 가지 연쇄붕괴 시나리오에 대하여 연쇄붕괴 해석을 수행하고 그 결과를 비교하였다. 축소 모델은 전체 모델과 유사한 연쇄붕괴 양상을 보여 주지만 소요된 시간은 전체 모델의 약30%로 줄일 수 있었다. 본 논문에서 제안된 연쇄붕괴 해석 방안은 비정상 하중에 의한 초고층 건물의 연쇄붕괴 해석에 유용하게 사용될 수 있다.

동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템 (Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics)

  • 신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.183-189
    • /
    • 2021
  • 구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.

효과적 고령자 주거 설계를 위한 IT와 건축 설계 기술의 융합 가능 방안 연구 (Research on Possible Method to Converge IT and Architectural Design Techniques for Efficient Design of Elderly Housing)

  • 배홍민;김병서
    • 인터넷정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.87-93
    • /
    • 2016
  • 한국의 고령화가 급속하게 진행됨에 따라 고령자의 삶의 질을 향상시키기 위한 필요성이 증가 하고 있으며, 이에 따라 건축 설계 방식들도 고령자의 주거 환경 향상 및 행태 변화에 대응하기 위한 모듈러 공법으로 전화되어가고 있으며 고령자들을 위한 다양한 IT 시스템들도 제안되어 오고 있다. 본 논문에서는 앞서 언급한 고령자를 위한 주거설계 기법과 IT기술들의 배타적인 발전에서 벗어나 건축 설계 초기부터 IT 기술과의 융합적 건축 설계를 하기 위한 방법론에 대하여 논하며, 구체적으로 고령자 행동 및 주거 IT서비스 계획 요소 분석과 모듈러 주거 공법에서 IT서비스의 융합의 고려사항들에 대하여 연구하였다.