• 제목/요약/키워드: arc resistance

검색결과 412건 처리시간 0.029초

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스 (Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization)

  • 강성구;이창완;정윤장;김창균;김성탁;김동환;이영국
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구 (A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust)

  • 류한길;임남웅;박종옥
    • 콘크리트학회지
    • /
    • 제9권1호
    • /
    • pp.143-151
    • /
    • 1997
  • 전기로 집진 분진상의 중금속(Pb, $Cr^{6+}$, Cu, Cd, Zn)을 함침시킨 규조토를 열처리방법($750^{\circ}C$-30분)으로 활성화하였다. 활성규조토로 일반시멘트 모르터의 시멘트양을 중량비로 0%, 2.5%, 5.0%, 10%, 20%까지 대체하고 압축강도와 화학저항성을 조사하였다. 화학저항성 조사에는 습윤건조반복실험(Wetting /Drying Cycle)과 화학침식저항성($H_2SO_4,\; CaCl_2,\; MgSO_4$)이 포함되었다. 결과에 의하면 일반시멘트 모르터에 활성규조토를 시멘트에 10%까지 치환하여 갈수록 압축강도(28일)는 증가하였다. 최고의 압축강도는 활성규조토가 10%까지 치환하였을 때 $496kgf/cm^2$이었으며, 활성규조토가 전혀 혼합되지 아니한 시멘트 모르터의 압축강도($391kgf/cm^2$)보다 약 275까지 증가되었다. 이때 중금속들은 99% 이상의 고정율을 보였으며 Wet/Dry cycle 및 화학침식저항성에서도 활성규조토가 혼합된 시멘트 모르터가 일반 시멘트 모르터보다 훨씬 높은 저항성을 보였다.

Zr-0.2Sn-0.8Nb 합금의 부식특성에 대한 Si, Mo 및 Mn 원소의 첨가영향 (Effect of Si, Mo, and Mn on the Corrosion Characteristics of Zr-0.2Sn-0.8Nb Alloy)

  • 이명호;최병권;정용환
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.182-189
    • /
    • 2002
  • The Zr-0.2Sn-0.8Nb-X(X = 0~200ppm Si, 0~0.4wt.% Mo and Mn respectively) ingots for test specimens were manufactured by a vacuum arc re-melting method to find out the effect of Si, Mo, and Mn on the corrosion characteristics of the Zr-0.2Sn-0.8Nb alloy. After being heat-treated and rolled repeatedly out to be flat materials, they were finally heat-treated at 51$0^{\circ}C$ for three hours and used as the specimens for corrosion tests. The corrosion behavior of the specimens was studied in both 40$0^{\circ}C$ steam for 200 days and in aqueous 70 ppm LiOH solution at 36$0^{\circ}C$ for 90 days. From the study it was found that Si from 80 to 200 ppm contributed to increasing the corrosion resistance of Zr-0.2Sn-0.8Nb alloy in both steam and LiOH solution. This study also showed that Mn from 0.1 to 0.4% caused to go up the corrosion resistance, whereas Mo played a apart in improving the corrosion resistance only between 0.05 and 0.2 wt.%.

전동차 주습판(Pantograph Slider) 재질개선 및 실차 적용에 관한 연구 (A Study on Material Development for and Application of a Slider of Pantograph)

  • 조규화
    • 한국철도학회논문집
    • /
    • 제18권5호
    • /
    • pp.410-418
    • /
    • 2015
  • VVVF 전동차 팬터그래프의 주습판은 전차선과 미끄럼 접촉에 의한 집전을 하면서 편마모 등 이상마모 현상이 나타나게 된다. 우천 시에는 윤활성분이 손실되어 주습판과 전차선과의 왕복운동에 대한 마찰저항이 급상승하여 국부적 마모가 가속화 된다. 내마모 특성을 가져야 하는 동계 주습판의 특성을 고려하여 합금설계를 통해 제작된 개선 주습판의 현차시험 결과 이상마모와 편마모가 발생하지 않았다. 개선된 주습판의 밀도향상은 Fe-Ti의 부석효과를 상승시켜 우기 시에도 우수한 내마모성 및 내아크성을 유지함으로써 이상마모 발생을 방지하였다. 또한, 기계적, 전기적 마모에 의한 주습판의 성분 및 조성변화가 일어나지 않았다. 주습판의 내마모성 향상에 기여함과 더불어 우기와 동절기 등 악 조건하에서 현차시험을 거치고 전차선과의 상관관계도 분석하여 전 전동차에 적용하였다.

내산화성 Cr-Si-Al합금의 주조상태 및 고온가열 후의 미세조직 특성 (Microstructural Characteristics of Oxidation Resistant Cr-Si-Al alloys in Cast State and after High Temperature Heating)

  • 김정민;김채영;양원철;박준식
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.156-161
    • /
    • 2021
  • Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 ℃, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

하이브리드 코팅 시스템에 의해 합성된 Zr-Al-N 박막의 미세구조와 기계적 특성, 산화 특성, 부식특성 (Microstructure, Mechanical, Oxidation and Corrosion Properties of Zr-Al-N Coatings Synthesized by the Hybrid Coating System)

  • 최하송;장재호;안은솔;김광호
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.242-247
    • /
    • 2013
  • Zr-Al-N coatings were synthesized by the hybrid coating system combining arc ion plating and DC magnetron sputtering from a Zr and an Al target in argon-nitrogen atmosphere, respectively. By changing the power applied on the Al cathodes, the Zr-Al-N coatings with various Al contents were deposited. The microstructure and chemical compositions of the Zr-Al-N coatings were studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). With increasing of Al content in the coatings, the solid solution (Zr, Al)N crystallites were observed in the Zr-Al-N coatings. The nanohardness of the Zr-Al-N coatings exhibited a maximum value of 42 GPa for the Zr-Al (7.9 at.%)-N, and decreased with further increase in Al content in the coatings. The oxidation and corrosion behavior of the Zr-Al-N coatings revealed better properties compared than those of ZrN coatings due to the formation of a solid solution.

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF