• Title/Summary/Keyword: arc generation

Search Result 230, Processing Time 0.024 seconds

A Mathematical Model for Coordinated Multiple Reservoir Operation (댐군의 연계운영을 위한 수학적 모형)

  • Kim, Seung-Gwon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.779-793
    • /
    • 1998
  • In this study, for the purpose of water supply planning, we propose a sophisticated multi-period mixed integer programming model that can coordinate the behavior of multi-reservoir operation, minimizing unnecessary spill. It can simulate the system with operating rules which are self- generated by the optimization engine in the algorithm. It is an optimization model in structure, but it indeed simulates the coordinating behavior of multi-reservoir operation. It minimizes the water shortfalls in demand requirements, maintaining flood reserve volume, minimizing unnecessary spill, maximizing hydropower generation release, keeping water storage levels high for efficient hydroelectric turbine operation. This optimization model is a large scale mixed integer programming problem that consists of 3.920 integer variables and 68.658 by 132.384 node-arc incidence matrix for 28 years of data. In order to handle the enormous amount of data generated by a big mathematical model, the utilization of DBMS (data base management system)seems to be inevitable. It has been tested with the Han River multi-reservoir system in Korea, which consists of 2 large multipurpose dams and 3 hydroelectric dams. We demonstrated successfully that there is a good chance of saving substantial amount of water should it be put to use in real time with a good inflow forecasting system.

  • PDF

Study of the welding monitor and characteristics according to a change in Gas mixture by FCAW (FCAW의 혼합가스 변화에 따른 용접 모니터링과 특성에 관한 연구)

  • Lim, Byung-Chul;Kang, Chul-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5933-5938
    • /
    • 2014
  • In this study, the effect of varying the mixture gas during FCA welding was studied for an Atos 60 test piece. To examine the characteristics of welding, the weldability of the material was checked before welding and online monitoring was performed to examine the mechanical properties after welding. The mixture Ar 80% + $CO_2$ 20% at low speed gave very elegant beads with very little spatter. 100% $CO_2$ gave rise to high spatter generation. For Ar 80% + $CO_2$ 20%, the low current region due to the normal short circuits created spatter, which was more than double for 100% $CO_2$. This peak distribution occurred due to the instability of the arc. The tensile test result for Ar 80% + $CO_2$ 20%, Ar 90%+ $CO_2$ 10% and $CO_2$ 100% at 511MPa, 507MPa, and 469MPa showed that the yield strength was improved by 8.1 and 8.9% for 80%+ $CO_2$ 20% and Ar 90%+ $CO_2$ 10%, respectively, compared to 100% $CO_2$. The tensile test result at 622MPa, 609MPa, and 581MPa showed that the yield strength was improved by 7.0% for both the mixture gas compared to 100% $CO_2$.

A Study on the Mixing of Dilution Air and Ammonia in the Ammonia Mixing Pipe of the Thermal Power Plant De-NOx Facility (화력발전소 탈질설비의 암모니아 혼합 관에서 희석 공기와 암모니아의 혼합에 관한 연구)

  • Kim, Ki-Ho;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • According to reinforce environmental regulations, coal power plants have used selective catalytic reduction using ammonia as a reducing agent to reduce the amount of nitrogen oxide generation. The purpose of the present study was to derive a mixing device for effectively mixing dilute air and ammonia in the ammonia mixing pipe by performing computational fluid dynamic analysis. The mixing effect was compared by analysing the %RMS of ammonia concentration at the down stream cross section in the mixing pipe and the 16 outlets based on the case 1-1 shape, which is an existing mixing pipe without a mixing device. The mixing device was performed by changing the positions of a square plate on the downstream side of the ammonia supply pipe and an arc-shaped plate on the wall of the mixing pipe. In the case of the existing geometry(Case 1-1), the %RMS of ammonia concentration at the 16 outlets was 29.50%. The shape of the mixing device for Case 3-2 had a square plate on the downstream side of the ammonia supply pipe and an arc plate was installed adjacent to it. The %RMS of ammonia concentration for Case 3-2 was 2.08% at 16 outlets and it could be seen that the shape of Case 3-2 was the most effective mixing shape for ammonia mixing.

A Study on the Automatic Abstracting System for Journal Articles in Korean in the Field of Microbiology (한국어 초록 작성의 자동화에 관한 연구 -미생물학분야 학술지의 논문을 대상으로-)

  • 이태영
    • Journal of the Korean Society for information Management
    • /
    • v.9 no.2
    • /
    • pp.43-79
    • /
    • 1992
  • This study proposes a Korean aut.omatic abstracting system in microbiology by applying Case Grammar, Concept Dependency Grammar, and Unification-Based Grammar(PATR- I[. DCG). The sample abstracts are analyzesd to clarify the ideal structure of abstract-a purpose sentence as first sentcnce, 2-3 method and result sentences as middle sentences, and a conclusion sentence as last sentences. To extract and refine the representative sentences constructing an automated abstract requires tht. rules giving the role features to nouns. And t.he rules rearranging the extracted sentences and the rules generating the abstract sentences arc also required. Evaluat.ing the effic~ency of this system. the method used in this automatic abstracting system needs thc more precise role features and the rules of sentence generation to reach the level of the author abstracts.

  • PDF

A Heuristic Algorithm for Designing Traffic Analysis Zone Using Geographic Information System (Vector GIS를 이용한 교통 Zone체계 알고리즘 개발 방안에 관한 연구)

  • Choi, Kee-Choo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.91-104
    • /
    • 1995
  • The spatial aggregation of data, in transportation and other planning processes, is an important theoretical consideration because the results of any analysis are not entirely independent of the delineation of zones. Moreover, using a different spatial aggregation may lead to different, and sometimes contradictory conclusions. Two criteria have been considered as important in designing zone systems. They are scale and aggregation. The scale problem arises because of uncertainty about the number of zones needed for a study and the aggregation problem arises because of uncertainty about how the data are to be aggregated to from a given scale problem. In a transportation study, especially in the design of traffic analysis zone(TAZ), the scale problem is directly related to the number dof zones and the aggregation problem involves spatial clustering, meeting the general requirements of forming the zones system such as equal traffic generation, convexity, and the consistency with the political boundary. In this study, first, the comparative study of delineating spatial units has been given. Second, a FORTRAN-based heuristic algorithm for designing TAZ based on socio-economic data has been developed and applied to the Korean peninsula containing 132 micro parcels. The vector type ARC/INFO GIS topological data mosel has been used to provise the adjacency information between parcels. The results, however, leave some to be desired in order to overcome such problems as non-convexity of the agglomerated TAZ system and/or uneven traffic phenomenon for each TAZ.

  • PDF

Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading (저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가)

  • Dewa, Rando Tungga;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

Fabrication and property of silica nanospheres via rice-husk (왕겨를 통한 실리카 나노스페어의 제작과 특성)

  • Im, Yu-Bin;Kwk, Do-Hwan;Wahab, Rizwan;Lee, Hyun-Choel;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF

Photoelectrochemical Characteristics at the Titanium Oxide Electrode with Light Intensity and pH of the Solution (산화 티타늄 전극의 광학농도와 pH에 따른 광전기화학적 특성)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.255-262
    • /
    • 1994
  • Arc melted Ti-5Bi alloy was oxidized by thermal oxidation method. In the present study free energy efficiency(${\eta}_e$) of titanium oxide electrode(TOE) was measured as a function of light intensity and light energy. Flat-band potential of TOE was measured as a function of the light intensity and the solution pH. The ${\eta}_e$ of TOE increased with the increase of light intensity and tight energy to maximum value of 3.2% and 13%, respectively, at $0.2W/cm^2$ and 4.0eV. The ${\eta}_e$ was strongly dependent on the magnitude of the bias voltage. Maximum value was found at 0.5V bias. Photocurrent of TOE was controlled by electron-hole pair generation in depletion layer. The flat-band potential of the illuminated TOE shifted to -0.065V/decade with increasing light intensity. With the decrease of pH of electrolyte, flat-band potential shifted to anodic direction. The experimental slope was in good agreement with the Nernstian value of 0.059V/pH decade.

  • PDF

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF