• 제목/요약/키워드: arbitrary section shape

검색결과 28건 처리시간 0.021초

설계 및 해석지원을 위한 PC용 단면계수계산 소프트웨어 개발에 관한 연구 (A Study on the Development of PC-based Section Property Calculation Software for Design Engineers)

  • 장성국;강신한
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.497-506
    • /
    • 1997
  • In this paper described is the software developed to calculate the physical properties of arbitrary section shape. The software consists of arbitrary section display module(ASDM) and section property calculation module(SPCM). ASDM defines and displays the shape of arbitrary section and SPCM calculates its properties such as area, centroid, moment of inertia, torsional constant, etc.. In many cases, calculation of section properties is not easy because user has to define the vertex coordinates which are difficult to do so in the case of arbitrary section. In the developed software, however, since user is asked to define only points of central lines and thickness of arbitrary section, the calculattion task of arbitrary section is very effective.

  • PDF

임의 단면형상을 갖는 보의 고유치 해석에 관한 연구 (Study of Finite Element Eigen Analysis of Beam With Arbitrary Cross Section)

  • 박근만;조진래;정의봉;배수룡
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.764-771
    • /
    • 2006
  • The use of 3-D finite elements for the eigen analysis of beam-like structures with arbitrary section shape may not be practical in certain cases, from the aspect of CPU time. In this connection, this paper presents a systematic algorithm for decomposing an arbitrary section into finite number of basic ones and computing essential sectional quantities required for the eigen analysis using the beam theory. The numerical accuracy of the proposed method is assesed from the comparison with the 3-D finite . element method.

  • PDF

자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화 (Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine)

  • 김도중;김영경
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

이형인발공정 하중예측에 관한 연구 (Prediction of Drawing Load in the Shape Drawing Process)

  • 이태규;이찬주;이상곤;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

임의 선박 단면형상의 입수충격력에 관한 수치적 연구 (Numerical Investigation of the Impact Pressure Acting on Arbitrary Ship Sections Falling into the Water Surface)

  • 살라부즈나;정노택
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.45-53
    • /
    • 2016
  • The interaction between the hull of ship and free surface of water generates important loads during slamming motion. In the present study, the slamming load applied on the sectional surface of two-dimensional arbitrary bodies has been investigated under several falling velocities. This simulation has been done with the commercial CFD software ANSYS FLUENT®. Through the conventional MARINTEK experiments for the benchmark of the simulation, we verified the impact pressure values between the experiments and simulation results. Two arbitrary ship bow section models, Panamax-like(with small convex bulb and flare) and Post panamax-like(with large convex bulb and flare) are also investigated. Simulation results show that a maximum impact pressure on the Post panama-like shape is higher than the Panamax-like shape. According to both a lump of water generated by arbitrary shape and various dead-rise angles of the shape, the pressure picks were enhanced in the simulation.

임의 형상의 윤곽선 시퀀스 정보로부터 형상 특징의 효율적인 연산 방법 (An Efficient Shape-Feature Computing Method from Boundary Sequences of Arbitrary Shapes)

  • 김성옥;김동규;김민환
    • 한국멀티미디어학회논문지
    • /
    • 제5권3호
    • /
    • pp.255-262
    • /
    • 2002
  • 윤곽선 시퀀스는 임의 형상을 간단하면서도 정확하게 표현할 수 있는 좋은 표현법이 될 수 있다. 그러나, 형상을 구성하는 화소로부터 쉽게 구할 수 있는 면적, 무게중심, 오리엔테이션 방향, 투영 히스토그램 등과 같은 형상 특징들을 윤곽선 시퀀스로부터 직접 구하기는 어렵기 때문에, 윤곽선 시퀀스를 임의 형상에 대한 표현법으로 잘 사용하지 못하였다. 본 논문에서는 형상 내부의 연속된 화소들로 구성된 수직(또는 수평)의 라인 세그먼트를 의미하는 크로스 섹션 개념을 이용하여, 윤곽선 시퀀스로부터 형상 특징들을 쉽게 구할 수 있음을 보인다. 윤곽선 시퀀스를 한번 순차적으로 탐색함으로써 크로스 섹션을 효율적으로 구할 수 있는 방법을 제안한다. 또한, 이진 영상으로부터 여러 형상의 윤곽선 시퀀스를 자동으로 추출할 수 있는 효율적인 방법도 함께 제안한다. 제안된 방법들은 형상 내부에 홀(hole)이 있는 경우에도 적용할 수 있다. 결과적으로, 윤곽선 시퀀스가 임의 형상 영역에 대한 매우 효과적인 표현이 될 수 있음을 밝힌다.

  • PDF

중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계 (Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail)

  • 박정현;이경훈;김성민;김희중;김성진;김병민
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계 (Blank Design in Sheet Metal forming Process Using the Rollback Method)

  • 김종엽;김낙수;허만성
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Cross-sectional analysis of arbitrary sections allowing for residual stresses

  • Li, Tian-Ji;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.985-1000
    • /
    • 2015
  • The method of cross-section analysis for different sections in a structural frame has been widely investigated since the 1960s for determination of sectional capacities of beam-columns. Many hand-calculated equations and design graphs were proposed for the specific shape and type of sections in pre-computer age decades ago. In design of many practical sections, these equations may be uneconomical and inapplicable for sections with irregular shapes, leading to the high construction cost or inadequate safety. This paper not only proposes a versatile numerical procedure for sectional analysis of beam-columns, but also suggests a method to account for residual stress and geometric imperfections separately and the approach is applied to design of high strength steels requiring axial force-moment interaction for advanced analysis or direct analysis. A cross-section analysis technique that provides interaction curves of arbitrary welded sections with consideration of the effects of residual stress by meshing the entire section into small triangular fibers is formulated. In this study, two doubly symmetric sections (box-section and H-section) fabricated by high-strength steel is utilized to validate the accuracy and efficiency of the proposed method against a hand-calculation procedure. The effects of residual stress are mostly not considered explicitly in previous works and they are considered in an explicit manner in this paper which further discusses the basis of the yield surface theory for design of structures made of high strength steels.