• Title/Summary/Keyword: arabinofuranosidase

Search Result 43, Processing Time 0.022 seconds

Pseudomonas sp. CB-33이 생산하는 $\beta$-Xylosidase의 특성

  • Yu, Jin-Whan;Kim, Hyun-Ku;Kim, Chi-Kyung;Lim, Jai-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.197-205
    • /
    • 1996
  • The $\beta$-xylosidase was purified 99- fold from the culture supernatant of Pseudo onas sp. CB-33 by ammonium sulfate precipitation, PEI precipita- tion, DEAE-Sephadex column chromatography, Sephadex G-75 gel filtration chromatography and preparative disc gel electrophoresis. Molecular weight of the enzyme was estimated to be 44,000 by SDS polyacrylamide gel electrophoresis. The enzyme has a pH optimum for activity at 7.0 and is stable over pH 6.5-9.0. The optimal temperature of the enzyme was 45$\circ$C, and its enzymatic activity was completely inactivated at 55$\circ$C for 30 min. Km value of the enzyme for p-nitrophenyl-$\beta$-D-xylopyranoside was calculated to be 4.6 mM. The effect of various reagents on the $\beta$-xylosidase activity was investigated. The enzyme activity was completely inhibited by Hg$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$. The $\beta$-xylosidase was inactivated by tryptophan-specific reagent, N-bromosuccinimide and tyrosine-specific reagent, iodine. The enzyme could degrade xylo-oligosaccharides to xylose and the enzyme was competitively inhibited by xylose. The $\beta$-xylosidase and endoxylanase from Psedomonas sp. CB-33 hydrolized xylan synergically. The purified enzyme also showed $\alpha$-L-arabinofuranosidase activity.

  • PDF

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Molecular Cloning and Expression of Bacillus stearothermophilus $\beta$-D-Xylosidase Gene in E. coli (Bacillus stearothermophilus $\beta$-D-Xylosidase 유전자의 크로닝 및 Escherichia coli에서의 발현)

  • 오세욱;박성수;최용진;박영인
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.136-142
    • /
    • 1992
  • Bacillus stearothemophilus isolated from soil was identified to express multiple extracellular xylanases. Two HindIII restriction fragments of 5.4 and 6.4 kb from B. stearothermophilus genomic DNA were cloned into pBR322 to obtain recombinant plasmids pMG0l and pMG02, respectively, which enabled E. coli HBlOl cells to produce $\beta$-D-xylosidase activity. By subcloning into pUC18 and Southern blotting, the loci of the $\beta$-D-xyiosidase genes were elucidated to be on non-homologous DNA fragments of 2.2 kb from pMGOl(pMG1) and 1.0 kb from pMG02(pMG2), respectively. The two enzymes produced in E. coli cleaved xylobiose, xylotriose, xylotetrose and xylotetrose to produce xylose as a major end product. The gene on pMG1, distinct from that on pMG2 was observed to encode a bifunctional protein that displayed both P-D-xylosidase (EC.3.2.1.37) and a-L-arabinofuranosidase activities (EC.3.2.1.55).

  • PDF

Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1

  • Chimtong, Suphavadee;Tachaapaikoon, Chakrit;Pason, Patthra;Kyu, Khin Lay;Kosugi, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.284-292
    • /
    • 2011
  • An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were $60^{\circ}C$ and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, ${\beta}$-xylosidase, ${\alpha}$-L-arabinofuranosidase, ${\beta}$-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Complete genome sequence of Enterococcus faecium strain AK_C_05 with potential characteristics applicable in livestock industry

  • Hyunok Doo;Jin Ho Cho;Minho Song;Eun Sol Kim;Sheena Kim;Gi Beom Keum;Jinok Kwak;Sriniwas Pandey;Sumin Ryu;Yejin Choi;Juyoun Kang;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.438-441
    • /
    • 2024
  • The Enterococcus faecium (E. faecium) strain AK_C_05 was isolated from cheonggukjang, the Korean traditional food, collected from a local market in South Korea. In this report, we presented the complete genome sequence of E. faecium strain AK_C_05. The genome of E. faecium strain AK_C_05 genome consisted of one circular chromosome (2,691,319 bp) with a guanine + cytosine (GC) content of 38.3% and one circular plasmid (177,732 bp) with a GC content of 35.48%. The Annotation results revealed 2,827 protein-coding sequences (CDSs), 18 rRNAs, and 68 tRNA genes. It possesses genes, which encodes enzymes such as alpha-galactosidase (EC 3.2.1.22), beta-glucosidase (EC 3.2.1.21) and alpha-L-arabinofuranosidase (EC 3.2.1.55) enabling efficient utilization of carbohydrates. Based on Clusters of Orthologous Groups analysis, E. faecium strain AK_C_05 showed specialization in carbohydrate transport and metabolism indicating the ability to generate energy using a variety of carbohydrates.

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer (꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성)

  • 박소현;이기영;안종호;장문백;김창현
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.77-90
    • /
    • 2006
  • The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

Structural Analysis of Anti-metastatic Polysaccharides Isolated from Opuntia humifusa (천년초에서 분리한 항전이 다당의 구조 분석)

  • Choi, Jung-Ho;Shin, Kwang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.214-222
    • /
    • 2011
  • To examine the new practical utilization of mucilages in Opuntia humifusa, polysaccharides were isolated from O. humifusa and their anti-metastatic activity and structural analysis were carried out. In experimental lung metastasis of B16BL6 melanoma cells, prophylactically intravenous (i.v.) administration of the crude polysaccharide (CNC-0) from O. humifusa significantly inhibited lung metastasis in a dose-dependant manner. The main polysaccharide, CNC-Ia was purified to homogeneity from CNC-0 by two successive column chromatographies using DEAE-Sepharose FF and Sephadex G-100 and its structure was characterized. Molecular mass of CNC-Ia was estimated to be 700 kDa and it mainly consisted of arabinose, galactose and xylose in addition to two minor sugars such as rhamnose and fucose. Methylation analysis indicated that CNC-Ia comprised at least 18 different glycosyl linkages such as terminal Araf, 5-linked Araf, 4-linked Galp and terminal Xylp in addition to three characteristic linkages such as full branched Araf, 3,4,6-branched Galp and full branched Galp. To analyze the fine structure of CNC-Ia, it was sequentially digested by exo-${\alpha}$-L-arabinofuranosidase and endo-${\beta}$-1,4-D-galactanase. These analyses suggested that CNC-Ia belongs to be a highly branched Type I arabinogalactan which has a ($1{\rightarrow}4$)-${\beta}$-galactan backbone with arabinosyl oligosaccharide side chains.

Glycosidase Pattern of Bacteroides fragilis Roid 8 Isolated from a Korean Adult Feces (한국인 분변으로부터 분리된 Bacteroides fragilis Roid 8의 Glycosidase 패턴)

  • Ji, Geun-Eog;Lee, Se-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.191-195
    • /
    • 1993
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic bacteria. Amongst them, most prevalent bacteria are Bacteroides, Eubacterium, Peptococcus, Bifidobacteria. We isolated a Bacteroides fragilis strain from a Korean adult and examined various glycosidase activities of this strain. The activities of $N-acetyl-{\beta}-glucosaminidase,\;{\alpha}-fucosidase$, ${\beta}-glucuronidase$, chitobiase and PNPCase were stronger in Bacteroides fragilis Roid 8 than in other intestinal anaerobic bacteria. $N-acetyl-{\beta}-glucosaminidase$ was strongest, followed by ${\alpha}-fucosidase$, ${\beta}-glucuronidase$ and PNPCase. The activities of ${\beta}-galactosidase$, ${\beta}-xylosidase,\;{\alpha}-arabinofuranosidase$ were not present or very low. The activities of ${\alpha}-glucosidase$, ${\beta}-glucosidase$ and ${\alpha}-galactosidase$ were present but at a lower level than in Bifidobacterium. The effect of the carbon sources on the production of $N-acetyl-{\beta}-glucosaminidase$, ${\alpha}-fucosidase$, ${\beta}-glucuronidase$ and PNPCase of Bacteroides fragilis Roid 8 was investigated. :.actose and glucose lowered the production of the varous glycosidase enzymes studied in this work. In addition, we investigated the optimum temperature and pH of each glycosidase from Bacteroides fragilis Roid-8 using crude enzyme preparations.

  • PDF