• Title/Summary/Keyword: aqueous system

Search Result 1,124, Processing Time 0.035 seconds

Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops (거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성)

  • Kim, Uijin;Kim, Jeong-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

Fabrication and Electrochemical Characterization of N/S co-doped Carbon Felts for Electric Double-Layer Capacitors (전기이중층 커패시터용 질소/황이 동시에 도핑된 탄소 펠트의 제조 및 전기화학적 성능 평가)

  • Lee, Byoung-Min;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 ℃ under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3-electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.

Trapezoidal Cyclic Voltammetry as a Baseline for Determining Reverse Peak Current from Cyclic Voltammograms

  • Carla B. Emiliano;Chrystian de O. Bellin;Mauro C. Lopes
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.405-413
    • /
    • 2024
  • Several techniques for determining the reverse peak current from a cyclic voltammogram (CV) for a reversible system are described in the literature: CV itself as a baseline with long switching potential (Eλ) that serves as a baseline for other CVs, Nicholson equation that uses CV parameters to calculation reverse peak current and linear extrapolation of the current obtained at the switching potential. All methods either present experimental difficulties or large errors in the peak current determination. The paper demonstrates, both theoretically and experimentally, that trapezoidal cyclic voltammetry (TCV) can be used as a baseline to determine anodic peak current (iap) with high accuracy and with a switching potential shorter than that used by CV, as long as Eλ is at least 130 mV away from the cathodic peak. Beyond this value of switching potential the electroactive specie is completely depleted from the electrode surface. Using TCV with Eλ = 0.34 V and a switching time (tλ) of 240 s as a baseline, the determination of the reverse peak current presents a deviation from the expected value of less than 1% for most of the CVs studied (except cases when Eλ is close to the direct potential peak). This result presents better accuracy than the Nicholson equation and the linear extrapolation of the current measured at the switching potential, in addition to presenting a smaller error than that obtained in the acquisition of the experimental current. Furthermore, determining the reverse peak current by extrapolating the linear fit of iap vs. ${\sqrt[1/]{t_{\lambda}}}$ to infinite time gave a reasonable approximation to the expected value. Experiments with aqueous potassium hexacyanoferrate (II) and ferrocene in acetonitrile confirmed the theoretical predictions.

Fuel cell system for SUAV using chemical hydride - I. Lightweight hydrogen generation and control system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - I. 경량 수소 발생 및 제어 장치)

  • Hong, Ji-Seok;Jung, Won-Chul;Kim, Hyeon-Jin;Lee, Min-Jae;Jeong, Dae-Seong;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • A compact hydrogen generation device of fuel cell system using chemical hydride storage technique was designed to fit the propulsion device requirement of a small unmanned aerial vehicle(SUAV). For high efficient, compact, and lightweight hydrogen generation control device, the Co-B catalyst hydrogen conversion rate by $NaBH_4$ aqueous solution flux is measured so that the proper amount of Co-B catalyst for maximum hydrogen generation of 100W stack was proposed. A compact hydrogen generation device is controlled by pump's on/off using its own internal pressure and consumes fuel in high efficiency through a dead-end type fuel cell. The fuel cell system has stable operation for a planed flight profile. The system operates up to maximum 7 hours and at least 4 hours for tough flight profiles.

Relative Sweetness and Sweetness Quality of Low Calorie Sweeteners in Milk and Coffee Model System (우유와 커피 모델 시스템에 적용된 저열량 감미 소재의 감미도와 감미질)

  • Choi, Ji-Hye;Kim, Kwang-Pyo;Chung, Seo-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.754-762
    • /
    • 2013
  • This study investigated the relative sweetness of various sweeteners (tagatose, xylose, erythritol, sucralose, and enzyme treated stevia) in milk and instant coffee systems. Additionally, the effects of interactions with other ingredients on the sensory characteristics of milk and coffee were explored. In the case of a banana-flavored milk system, sucrose was added to a concentration of 5%, and the five types of sweetener were added to a concentration of equal sweetness to a 5% concentration of sucrose. For coffee systems, 5.9% sucrose level and sweeteners' concentration equivalent to this level was added. A generic descriptive analysis was performed using ten trained panelists. The results showed that the relative sweetness of all the sweeteners was identical to that identified in the aqueous system, except for stevia in the milk system and in the coffee system with added vegetable cream. For the black coffee system, the relative sweetness decreased for tagatose, erythritol and for stevia. Fat and vegetable cream significantly affected the sensory qualities of milk and coffee, respectively.

Mesothermal Gold Vein Mineralization of the Seolhwa Mine: Fluid Inclusion and Sulfur Isotope Studies (설화 광산의 중열수 금광화작용: 유체포유물 및 황동위원소 연구)

  • Yun, Seong-Taek;So, Chil-Sup;Choi, Seon-Gyu;Choi, Sang-Hoon;Heo, Chul-Heo
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.278-291
    • /
    • 2001
  • Mesothermal gold vein minerals of the Seolhwa mine were deposited in a single stage of massive quartz veins which filled the mainly NE-trending fault shear zones exclusively in the granitoid of the Gyeonggi Massif. The Seolhwa mesothermal gold mineralization is spatially associated with the Jurassic granitoid of 161 Ma. The vein quartz contains three main types of fluid inclusions at 25$^{\circ}$C: 1) low-salinity (< 5 wt.% NaCl), liquid CO$_{2}$-bearing, type IV inclusion; 2) gas-rich (> 70 vol.%), aqueous type II inclusions; 3) aqueous type I inclusions (0${\sim}$15 wt.% NaCl) containing small amounts of CO$_{2}$. The H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl inclusions represent immiscible fluids trapped earlier along the solvurs curve at temperatures from 430$^{\circ}$ to 250$^{\circ}$C and pressures of 1 kbars. Detailed fluid inclusion chronologies may suggest a progressive decrease in pressure during the auriferous mineralization. The aqueous inclusion fluids represent either later fluids evelved through extensive fluid unmixing (CO$_{2}-CH$_{4}$ effervescence) from a homogeneous H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters possibly related to uplift and unloading of the mineralizing suites. The initial fluids were homogeneous containing H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl components and the following properties: the initital temperature of >250$^{\circ}$ to 430$^{\circ}$C, X$_{CO}\;_{2}$ of 0.16 to 0.62, 5 to 14 mole% CH$_{4}$, 0.06 to 0.3 mole% N$_{2}$ and salinities of 0.4 to 4.9 wt.% NaCl. The T-X data for the Seolhwa gold mine may suggest that the Seolhwa auriferous hydrothermal system has been probably originated from adjacent granitic melt which facilitated the CH$_{4}$ formation and resulted in a reduced fluid state evidenced by the predominance of pyrrhotite. The dominance of negative ${\delta}\;^{34}$S values of sulfides (-0.6 to 1.4$%_o$o) are consistent with their deep igneous source.

  • PDF

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

Growth enhancement and cytotoxicity of Korean mistletoe fractions on human cell lines (한국산 겨우살이 분획물의 면역세포의 생육증진 및 세포독성)

  • Lee, So-Jin;Lee, Mi-Kyoung;Choi, Geun-Pyo;Yu, Chang-Yeon;Roh, Seong-Kyu;Kim, Jong-Dai;Lee, Hyeon-Yong;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.1
    • /
    • pp.62-70
    • /
    • 2003
  • The biological activities on human immune and cancer cell lines of the four kinds of Korean mistletoes (Korean Viscum album, var. coloratum, : Korean Viscum sp. in Quercus acutissima Carr., Korean Viscum sp. in Castanea crenata, Korean Viscum sp. in Betula platyphylla, and Korean Viscum sp. in Salix koreensis) extracts were investigated. The extracts were preparated with ethanol, and fractionated with n-butanol, ethyl acetate, chloroform, hexane, and second distilled water. Cytotoxic potencies of the fractions on human normal lung cell line (HEL 299) showed under 28% in the concentration of 0.5 mg/ml. Growth inhibition effect of the Korean mistletoe extracts on the several human cancer cell lines depends on the concentration of the extracts, and extracting solvent. The hexane, chloroform, and ethyl acetate fractions indicated a strong anticancer activity, but not in aqueous and butanol fractions. Some mistletoe fractions have a different characteristic on the cancer cell lines. Stimulation on the growth of human immuno cell lines(B cell : Raji, T cell: Jurkat) of the extracts were confirmed in the ethyl acetate, chloroform, hexane fractions, but not in aqueous system.

Microfluidic System for the Measurement of Cupric Ion Concentration using Bilayer Lipid Membrane on Silver Surface (은 표면의 이중층 지질막에 의한 구리 이온 농도 측정용 마이크로플루이딕 시스템)

  • Jeong, Beum Seung;Kim, Do Hyun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • A microfluidic system has been developed using biomaterial for the measurement of cupric ion concentration. The cell-membrane-mimicking bilayer lipid membrane(BLM)-coated silver electrode was used for the sensing of cupric ion concentration. The silver-supported BLM could increase its stability. A silver-supported bilayer lipid membrane(s-BLM) was easily obtained using its self-assembling characteristics by immersing silver wire into lipid(phosphatidylcholine; PC) solution and then dipping into aqueous KCl solution. These s-BLMs were used to determine the relationship between $Cu^{2+}$ concentration and current crossing s-BLM. Their relationship showed high linearity and reproducibility. The calibration curve was constructed to express the relationship between $Cu^{2+}$ concentration and current in the $Cu^{2+}$ concentration range of 10 and $130{\mu}M$. This calibration curve was used to measure $Cu^{2+}$ concentration in an unknown sample. Microfluidic system with s-BLM was made of PDMS(polydimethyl siloxane) using typical soft photolithography and molding technique. This integrated system has various functions such as activation of the silver surface without cutting silver wire, coating of BLM on silver surface, injection of KCl buffer solution, injection of $Cu^{2+}$ sample and measurement of $Cu^{2+}$ concentration in the sample.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.