• Title/Summary/Keyword: aqueous electrolyte

Search Result 245, Processing Time 0.024 seconds

Electrochemical Quantitative Analysis of Mn(II) for the Study of Mn-Dissolution Behavior of LiMn2O4 (LiMn2O4의 Mn용출 현상 연구를 위한 전기화학적 Mn(II) 정량 분석법)

  • Son, Hwa-Young;Lee, Min-Young;Ko, Hyoung-Shin;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • A simple and rapid electrochemical method for the quantitative analysis of $Mn^{2+}$ ion is demonstrated with a view to examine the $Mn^{2+}$ dissolution behavior of $LiMn_2O_4$. The method described herein is based on the oxidation reaction of $Mn^{2+}$ to $Mn^{4+}(MnO_2)$ in aqueous buffer solution. Under the optimum condition (pH 8.9 0.04 M $NH_3-NH_4Cl$ buffer solution and glassy carbon working electrode), the linear range of $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) [$Mn^{2+}$] is obtained for the Linear sweep voltammetry(LSV) and $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) [$Mn^{2+}$] for the differential pulse voltammetry (DPV), respectively. It is also noted that the oxidation reaction of $Mn^{2+}$ ion is reduced with increasing amount of the electrolyte ($LiPF_6$, EC, EMC) added to the measuring solution, which is found to be mainly due to $LiPF_6$ and EC rather than EMC.

Preparation and Properties of Zirconia-based Electrolytes from m-Zirconia and Yag Sol (m-지르코니아와 Yag 졸로부터 지르코니아계 전해질 제조 및 물성)

  • Kang, Keon-Taek;Han, Kyoung R.;Nam, Suk-Woo;Kim, Chang-Sam;Lee, Young-Soo;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.834-838
    • /
    • 2001
  • Attempts were made to improve mechanical properties of zirconia-based electrolyte by preparing yttria-stabilized cubic zirconia/alumina composite. It was performed by precipitating Yag precursor in aqueous m-zirconia slurry. The powder was separated and then followed by heat treatment with expecting yttria to react with m-$ZrO_2$ to give yttria stabilized zirconia and alumina to be dispersed homogeneously. When 17.8wt% Yag(6.3mol% $Y_2O_3$) was used, fracture toughness and strength were substantially improved from 1.44MPa${\cdot}m^{1/2}$ and 270Mpa for YZ8Y to 3.62MPa${\cdot}m^{1/2}$ and 447MPa respectively, but electrical conductivity at $^{\circ}$C in air was decreased from 0.126 to 0.057${\Omega}^{-1}cm^{-1}$. It seemed due to the presence of small amount of tetragonal zirconia. But when 21.58wt% Yag(8.0mol% $Y_2O_3$) was added, fracture toughness of 2.93MPa${\cdot}m^{1/2}$ and flexural strength of 388MPa were obtained with electrical conductivity of ${\Omega}^{-1}cm^{-1}$.

  • PDF

Electrochemical Properties of Kaolinite in Aqueous Suspension (수용액중(水溶液中)에서의 Kaolinite 입자(粒子)의 전기화학적(電氣化學的) 성질(性質))

  • Lim, Hyung-Sik;Baham, J.;Volk, V.V.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.318-324
    • /
    • 1983
  • Electrochemical properties of Georgia kaolinite in aqueous suspension were studied by ion adsorption, potentiometric titration, and electrophoretic mobility measurements. Kaolinite in 0.001 M and 0.1 M NaCl solution showed qualitatively both pH independent and pH depender negative and positive charges through pH range 2.5-11.0 when dissolved aluminum ions from kaolinite were considered as well as $Na^+$ and $Cl^-$ as index ions. Electrophoretic mobilities (EM) of 0.02 wt. % kaolinite suspension in distilled water and 0.001 M NaCl solution were approximately constant against mobility measuring time consumed in the electrophoresis cell at different pH values, and isoelectric points(IEP) were around pH 4.7. EM values in 0.1 M NaCl solution were positive and constant against mobility measuring time below pH 4; but above pH 4, EM values were negative for the first 10 seconds followed by positive values which became approximately constant through stepped changes after 10 minutes. Hydrated cations may bind to the six- member oxygen ring sites having multiple partial negative charges on the exterior tetrahedral layer surface by both electrostatic and hydrogen bonding force while hydrated anions bind to the partially positively charged hydrogen atoms on the exterior octahedral layer surface. Parts of the aluminol groups on the exterior octahedral layer surface as well as edge faces may be involved in complex reactions and have both anion and cation exchange capacities in the electrolyte solution above pH 4.

  • PDF

A Study on the Aggregation properties of Sodium hyaluronate with Alkanediyl-bis(dimethylalkylammonium bromide) surfactants in aqueous solution (수용액에서 Sodium hyaluronate와 Alkanediyl-bis(dimethylalkylammonium bromide) 계면활성제의 회합성질에 관한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1003-1009
    • /
    • 2021
  • A study on the associative properties of sodium hyaluronate (NaHA) and Alkane-bis (dimethylalkylammonium bromide) surfactants in aqueous solution was investigated in relation to the chemical structure of surfactants. As a result of measuring the interfacial tension, a parabolic graph showing the minimum value (cmin) at a specific concentration was shown. Above this minimum concentration the increase in interfacial tension is thought to be related to the formation of aggregates of NaHA chains and dimeric surfactants. The plot of viscosity vs surfactant concentration shows a slight maxium at cmin and a viscosity decrease at high surfactant concentrations. Viscosity nonlinear behavior is related to the size increase due to the complex growth and to the size shrinkage following from the interaction with electrolyte ions and free micelles. The results of surface tension measurements show a broad region of surface tension decrease, indicating the NaHA-surfactant interaction. The increase in surface tension above cmin may be related to the adsorption of clusters, consisting of free NaHA chains and dimeric surfactant. The strong adsorption of surfactant is observed at high concentrations.

Continuous Mediated Electrochemical Oxidation of Ethylene Glycol by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 에텔렌글리콜의 연속 매개전해 산화)

  • Kim, Ik-Seong;Park, Seung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.635-640
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) is an aqueous process which oxidizes organics electrochemicallly at low temperatures and pressures. The useful process can be used to treat mixed wastes containing hazardous organics. This paper have studied MEO of ethylene glycol (EG) in nitric acids by Fe(III)/Fe(II) and Co(III)/Co(II) system. It investigated current density, supporting electrolyte concentration, hydraulic retention time, removal efficiency of EG by MEO. Removal efficiency of EG by MEO was superior in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, where MEO removal efficiency was 100 percent. In case of EG, the reactions were fast and good yields of carbon dioxide formation was observed.

Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures (ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율)

  • Lee, JeongGwan;Cheon, JongHun;Kim, NaRee;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Electrochemical Properties of Air-Formed Oxide Film-Covered AZ31 Mg Alloy in Aqueous Solutions Containing Various Anions

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • This research was conducted to investigate the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. Native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in seven different electrolytes containing the following anions $Cl^-$, $F^-$, $SO{_4}^{2-}$, $NO_3{^-}$, $CH_3COO^-$, $CO{_3}^{2-}$, and $PO{_4}^{3-}$. It was observed from open circuit potential (OCP) transients that the potential initially decreased before gradually increasing again in the solutions containing only $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions, indicating the dissolution or transformation of the native air-formed oxide film into new more protective surface films. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that there was growth of new surface films with immersion time on the air-formed oxide film-covered specimens in all the electrolyte. The least resistive surface films were formed in fluoride and sulphate baths whereas the most protective film was formed in phosphate bath. The potentiodynamic polarization curves illustrated that passive behaviour of AZ31 Mg alloy under anodic polarization appears only in $CO{_3}^{2-}$, or $PO{_4}^{3-}$ ions containing solutions and at more than $-0.4V_{Ag/AgCl}$ in $F^-$ ion containing solution.

A Study on Effect of the Shape of Electrodes in Alkaline Water Electrolysis (알카리 수전해에서 전극 형상의 영향에 관한 연구)

  • CHOI, SOOKWANG;KIM, JONGSOO;HAN, JIN MOOK;YUN, SEONG-HO;KIM, SEWOONG;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • For an investigation on the effect of the shape of electrodes in alkaline water electrolysis, two kinds of stack with circular and square electrode array are used to visualize both for behaviors of hydrogen bubble around the electrodes and for measurements of hydrogen production from these two stacks. The electrolytes for the hydrogen production experiment were applied for 20 wt%, 25 wt%, 30 wt% and 35 wt% of KOH alkaline aqueous solutions. As a result, the adhesion length of bubbles attached around the square electrode in the visualization experiment was found to be 1.7 times longer compared with the attached around the circular electrode. In the hydrogen production experiments, the volume of hydrogen production of the stack by using circular electrode array was approximately 3% more than that of the stack with square electrode array. These observations may be caused by the effect of the bubbles attached to the around the electrodes obstructing mass transfer such as hydrogen exhaust and electrolyte supply.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF