• 제목/요약/키워드: aqueous electrolyte

검색결과 245건 처리시간 0.028초

양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구 (Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder)

  • 강수영;이대원
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성 (Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes)

  • 김지일;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용 (Preparation of nano composite metal-oxide electrode and its application for superrcapacitor)

  • 김홍일;이주원;김상길;육경창;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성 (Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration)

  • 최원경;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.

$\gamma$-알루미나/KCl 수용액의 전기 이중층에서 계면 물성 (Interfacial Properties of $\gamma-Alumina/KCI^{(ag)}$ Electrical Double Layer)

  • 홍영호;함영민;장윤호
    • 한국세라믹학회지
    • /
    • 제31권6호
    • /
    • pp.678-684
    • /
    • 1994
  • The surface of alumina is capable of acquiring a change when it is in an aqueous solution. This surface change will have a strong influence on the surrounding ions, particularly those of opposite change known as the counter ions. A site-binding model of the {{{{ gamma }}-alumina/KCl(aq) interface was used to calculated theoretical surface ionization constants and P.Z.C.(Point of zero change) of {{{{ gamma }}-alumina. This paper was carried out to investigate the effect of calcination temperature on the acidic and electrical properties of pure {{{{ gamma }}-alumina prepared by the precipitation method from the Al(NO3)3.9H2O and NH4OH. From the experimental data it was shown that {{{{ gamma }}-alumina have a mainly Br nsted acid site. However, the acidity of {{{{ gamma }}-alumina decreased with increasing calcination temperature at strength Ho +9.3. The surface charge density of {{{{ gamma }}-alumina was increased with electrolyte ionic strength and calcination temperature.

  • PDF

분산된 p형 및 n형 반도체 입자의 도핑 효과와 반도체 동작 (Doping Effects and Semiconductor Behaviors of the Dispersed p- and n- type Semiconductor Particles)

  • 천장호;손광철;라극환;조은철
    • 전자공학회논문지A
    • /
    • 제31A권5호
    • /
    • pp.126-133
    • /
    • 1994
  • Doping effects and semiconductor behaviors of the dispersed p- and n-Si, p- and n- GaAs particles in the aqueous electrolyte have been studied using microelectrophoretic, voltammetric and chronoamperometric techniques. The cations (K$^{+}$) are adsorbed on both the p- and n- Si particle surfaces regardless of the sign of space charges in the depletion layers, i.e. doping profiles. The surface states are negatively charged acceptor states. On the other hand, the anions (CI$^{-}$) are adsorbed on both the p- and n- GaAs particle surfaces regardless of the sign of space charges in the depletion layers, i.e. doping profiles. The surface states are positively charged donor states. Under the same conditions, electrophoretic mobilities, electrochemical processes, doping effects and related semiconductor behaviors of the Si and the GaAs particles are similar regardless of the doping profiles, i. e. dopants and doping concentrations. The doping effects and related semiconductor behaviors of the dispersed p- and n- type semiconductor particles are gradually lost with decreasing dimensions.

  • PDF

CSMHYD를 이용한 혼합가스 하이드레이트의 상평형에 대한 연구 (A Study on the Phase Equilibrium Conditions of Mixture Gas Hydrates using CSMHYD)

  • 서향민;박윤범;천원기;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.585-589
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production, Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% Nacl. The results show that Nacl acts as a inhibitor, but help gases such as ethan, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

  • PDF

Ionic Mass Transport Correlation of Double-Diffusive Convection in Horizontal Fluid Layers

  • Kim, Min-Chan;Hyun, Myng-Taek;Yoon, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1396-1402
    • /
    • 2000
  • Here is investigated the characteristics of double-diffusive convection in thermally-stable stratified horizontal fluid layer. By employing an electrochemical technique, and adopting aqueous CuSO$_4$-H$_2$SO$_4$solution as electrolyte, experiments on ionic mass transfer have been conducted systematically. And, also a new mass transfer correlation in double-diffusive situations has been derived by extending the model of micro-scales of turbulence, which was proposed by Arpaci. The resulting correlation of the Sherwood number as a function of the thermal Rayleigh number was in good agreement with the present experimental results. The present study provides plausible understanding in controlling both mass and heat transfer rates for practical situations including double-diffusive convection.

  • PDF

Electrochemical Oxidation of Hydrazine in Membraneless Fuel Cells

  • Durga, S.;Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권3호
    • /
    • pp.73-81
    • /
    • 2014
  • This paper describes the continuous flow operation of membraneless sodium perborate fuel cell using acid/alkaline bipolar electrolyte. Here, hydrazine is used as a fuel and sodium perborate is used as an oxidant under Alkaline-acid media configuration. Sodium perborate affords hydrogen peroxide in aqueous medium. In our operation, the laminar flow based microfluidic membranleless fuel cell achieved a maximum power density of $27.2mW\;cm^{-2}$ when using alkaline hydrazine as the anolyte and acidic perborate as the catholyte at room temperature with a fuel mixture flow rate of $0.3mL\;min^{-1}$. The simple planar structured membraneless sodium perborate fuel cell enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구 (Equilibrium Conditions of Methane Hydrate added Help Gases)

  • 김남진;임상훈;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.