• Title/Summary/Keyword: aqueous cyanide

Search Result 18, Processing Time 0.027 seconds

FERRATE(VI) FOR WASTE WATER TREATMENT : OXIDATION OF CYANIDE IN AQUEOUS MEDIUM

  • Tiwari, Diwakar;Kim, Hyoung-Uk;Lee, Seung-Mok;Yang, Jae-Kyu;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.318-324
    • /
    • 2006
  • The higher valence state of iron i.e., Fe(VI) was employed for the oxidation of one of an important toxic ion, cyanide in the aqueous medium. Cyanide was oxidized into cyanate, which is 1,000 times less toxic to cyanide and often accepted for its ultimate disposal. It was to be noted that Fe(VI) is a very powerful oxidizing agent and can oxidize most of the cyanide within few minutes i.e., ca 5 mins of contact. The data was obtained by the UV-Visible measurements for the Fe(VI) decomposition. The UV-Visible data was used to evaluate the overall rate constant for second order redox reaction between ferrate(VI) and cyanide. Also the pseudo first order rate constant was calculated as keeping the cyanide concentration in excess.

Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

  • Noh, Jin Young;Hwang, In Hong;Kim, Hyun;Song, Eun Joo;Kim, Kyung Beom;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1985-1989
    • /
    • 2013
  • A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward $CN^-$ ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of $CN^-$ to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 ${\mu}M$) is below the 1.9 ${\mu}M$ suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of $CN^-$ concentrations in aqueous samples.

Teaching a Known Molecule New Tricks: Optical Cyanide Recognition by 2-[(9-Ethyl-9H-carbazol-3-yl)methylene]propanedinitrile in Aqueous Solution

  • Tang, Lijun;Zhao, Guoyou;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3696-3700
    • /
    • 2012
  • The colorimetric and fluorescent cyanide recognition properties of 2-[(9-ethyl-9H-carbazol-3-yl)methylene]-propanedinitrile (1) in $CH_3CN-H_2O$ (2/1, v/v, HEPES 10 mM, pH = 7.0) solution were evaluated. The optical recognition process of probe 1 exhibited high sensitivity and selectivity to cyanide ion with the detection limit of $2.04{\times}10^{-6}$ M and barely interfered by other coexisting anions. The sensing mechanism of probe 1 is speculated to undergo a nucleophilic addition of cyanide to dicyanovinyl group present in compound 1. The colorimetric and fluorescent dual-modal response to cyanide makes probe 1 has a potential utility in cyanide detection.

Cyanide detection based on natural dyes reaction from blue butterfly pea flowers (Clitoria Ternatea)

  • Chotichayapong, Chatrachatchaya;Kuchaiyaphum, Pusita;Butwong, Nutthaya;Bua-ngern, Worapong
    • Analytical Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.153-160
    • /
    • 2022
  • A green spectrophotometric method for the determination of cyanide has been proposed using, a green reagent, aqueous extract of blue butterfly pea. The test tube was filled with anthocyanin rich extract (pH 6) and cyanide solution. The reaction was kept constant for 10 minutes at room temperature. The reaction mixture changed color from blue to green as the amount of CN-ions increased. The 620 nm peak intensity increased with CN concentration. Therefore, this wavelength was used for all cyanide analyses. The cyanide calibration curve had a linear range of 0.25-1.00, 1.00-4.00, and 4.00-10.00 mg/L, with a satisfactory correlation coefficient of 0.99 and a LOD of 0.57 mg/L. The recovery ranged from 8.33 to 76.94 percent, indicating that this method is inaccurate at low cyanide concentrations. The intra-day and intermediate precision relative deviations were 0.391-0.871 % and 1.112-1.583 %. An H-bond forms between the C-4 group of the B-carbonyl ring and the HCN molecule according to the B3LYP/TZVP calculation. The method is convenient for cyanide concentrations above the LOQ of 1.09 mg/L, cost-effective, and capable of reducing toxic solvents with acceptable precision. The method could also be used to detect total cyanide in biological, environmental, and industrial waste samples.

Removal of Aqueous Cyanide through the Utilization of Industrial By-products (산업부산물(제강 Sludge, 제강 Slag)을 이용한 시안 흡착 제거)

  • 이정원;현재혁;조재범
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.89-99
    • /
    • 1998
  • Sorption of the aqueous cyanide onto steel mill sludge and steel mill slag, both of which are the by-products from the converter furnace, was studied. In the study, the influence of temperature, activation energy, concentration and pH on sorption of cyanide was investigated. Three different temperature($25^{\circ}C$ > $37^{\circ}C$> $50^{\circ}C$) was chosen to represent that of landfill leachate. Initial concentration was 1 mg/$\ell$ 5 mg/$\ell$, 10 mg/$\ell$, and 20 mg/$\ell$. In addition, pH was set to three different level, that is, 3, 7, and 11 respectively. As the result of batch mode experiment for cyanide adsorption, the removal rate was found to be proportional to the initial concentration of cyanide. The order of removal rate was 20 mg/$\ell$> 10 mg/$\ell$> 5 mg/$\ell$> 1 mg/$\ell$. Similarly the influence of pH was proportional because of the change in solubility of cyanide. The order of removal rate was pH 11 > pH 7 > pH 3. As the temperature increased, so did the removal rate. The reaction was endothermic and the value of activation energy(Ea) was 127.93 J/mole and 59.44 J/mole respectively at 1 mg/ιand 20 mg/ιof initial concentration. From the experiment, it can be postulated that the capability of steel mill by-products to attenuate aqueous cyanide is enough to be used as substitute for clay liner of landfill site in the aspect of pollutant removal.

  • PDF

Highly sensitive and selective detection of cyanide in aqueous solutions using a surface acoustic wave chemical sensor (표면음향파 화학센서를 이용한 수용액 중 시안화이온의 선택적인 고감도 검출)

  • Lee, Soo Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.473-479
    • /
    • 2016
  • We report a highly selective and sensitive 200 MHz Surface Acoustic Wave (SAW) sensor that can detect cyanide ion in aqueous solution using surface immobilized thioester molecules in combination with gold nanoparticles (AuNPs). To construct the sensor device, a monolayer of thioester compound was immobilized on the SAW sensor surface. At the sensor surface, hydrolysis of thioester group by nucleophilic addition of cyanide occurred and the resulting free thiol unit bound to AuNP to form thiol-AuNP conjugate. For the signal enhancement, gold staining signal amplification process was introduced subsequently with gold (III) chloride trihydrate and reducing agent, hydroxylamine hydrochloride. The SAW sensor showed a detection ability of $17.7{\mu}M$ for cyanide in aqueous solution and demonstrated a saturation behavior between the frequency shift and the concentration of cyanide ion. On the other hand, our SAW sensor had no activities for other anions such as fluoride ion, acetate ion and sulfate ion, moreover, no significant interference observed by other anions. Finally, all the experiments were carried out in-house developed sensor and fluidics modules to obtain highly reproducible results.

Electrochemical Destruction of Cyanide Ions and Recovery of Zinc Ions from Electroplating Wastewater (도금폐수 중의 시안착이온의 전기화학적 분해 및 아연 회수에 관한 연구)

  • Niu, Lin;Ro, Byung-Ho;Jung, Cheul;Lee, Yong-Ill
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.699-704
    • /
    • 2000
  • A study has been made for the electrochemical destruction of cyanide ions and removal of zinc ions from a simulated electroplating wastewater by the use of a platinum platized-titanium anode and a stainless steel cathode. Several experimental parameters, including electrolysis time, cell current, additives, and chloride concentration, have been investigated and used for efficient destruction of cyanide waste and removal of zinc ions from aqueous solutions. It was found that cell current and type of additives gave great effects on the destruction of cyanide ions and removal of zinc ions. The optimized conditions (electrolysis time: 1hr, current: 12A, additive: 0.5 M NaCl) have been defined to destroy cyanide ions and remove zinc ions with high efficiency and low operation cost. The proper reaction mechanism leading to the destruction of cyanide on the anode has also been discussed.

  • PDF

Photocatalytic Treatment of Cyanide in Water (광촉매 반응에 의한 물 속 시안이온의 처리)

  • Yeo, Seung-Wook;Kim, Jae-Hyun;Lee, Ho-In
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.64-68
    • /
    • 2002
  • Photocatalytic treatment of aqueous cyanide was studied using both commercial and home-made $TiO_2$'s as catalysts. Among the catalysts, $TiO_2$ made from $Ti(OC_3H_7)_4$ as a precursor showed the highest activity for the degradation of cyanide exceeding a commercial catalyst of Degussa P25. The difference in activities of the catalysts was mainly related to the surface properties of the catalysts such as the ratio of acidic to basic hydroxyl groups. For the catalyst which showed the highest activity, partially reduced $TiO_2$ showed better activity than calcined one.

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.