• Title/Summary/Keyword: aquatic pollution

Search Result 272, Processing Time 0.033 seconds

Effects of Cadmium, Copper, Chromium, Nickel, Silver, and Zinc on the Embryonic Development of the Sea Urchin, Strongylocentrotus intermedius (북쪽말똥성게 (Strongylocentrotus intermedius) 배아 (embryo)를 이용한 중금속에 대한 민감도 비교)

  • Ryu, Tae-Kwon;Hwang, In-Young;Lee, Taek-Kyun;Yoon, Jun-Heon;Lee, Chang-Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • Discharged materials from the point or non-point source are released into the sea, and as the results, marine environment is directly affected. We must estimate the impacts of contaminants to marine pollution rapidly and accurately. Therefore, it is needed on early warning system for appreciating marine environmental impacts, and required a bioassay to evaluate abnormal changes. A bioassay test was developed to examine the effects of heavy metal contaminants on the early life stages of the marine annimals. We have studied the effects of metals on early development of a sea urchin species, Strongylocentrotus intermedius. S. intermedius embryos were tested with six metals (Cu, Ag, Zn, Cd, Cr, Ni) and showed the highest sensitivity to Cu as well as the lowest sensitivity to Cd. The order of biological impact for metals was Cu>Ag>Ni>Zn>Cr>Cd. In accordance with the results, sea urchins embryos can provide biological criteria for seawater quality assessment. The sensitivity of developmental bioassay whith S. intermedius is at intermediate level among marine organisms commonly used in aquatic bioassays. And this sea urchin can be routinely employed as a test organism for ecotoxicity assays.

Studies on the Ecological Management and Stream Environment in Dorim Stream for Establishing Eco-wetland Parks (도림천 수변지역 조성을 위한 생태적 관리방안 및 하천환경 관리방안에 관한 연구)

  • Lee, Sang-Don;Kim, Seok-Chul
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • Urban streams are degrading functional role due to development and pollution. This study chose the representative stream of Do-rim and identified flora and fauna. The ecological survey aimed at identifying indicator of urban streams for measuring urban healthiness and we discussed the possibility of wetland conservation area. From the beginning of Dorim stream to An-yang mixture we were successfully identified 113 species of plants, 9 of mammals, 23 of birds, 4 of amphibians, 2 of reptiles and 2 of fish species. Terrestrial insects were 71 species. The wetland vegetation is quite various and we suggested 4 different vegetation zones (aquatic vegetation zone, emergent zone, riparian-meadow zone, riparian-woodland zone) depending on distance from the flowing water stream and vegetation characteristics for urban stream management.

  • PDF

A Fast and Sensitive Method for the Simultaneous Determination and Quantification of Six Anionic Surfactants in Surface Water using HILIC-ESI-MS Technique

  • Dash, Upendra N.;Paul, Saroj Kumar
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.78-81
    • /
    • 2012
  • The hydrophobic hydrocarbon chain and the polar sulfate group confer surfactant properties and enable them to be used as anionic surfactants. Anionic surfactants (AS) are known for their adverse impact on environment, particularly on aquatic ecosystem. In the present study a fast, sensitive and selective method for the determination and subsequent quantification of six anionic surfactants was developed using hydrophilic interactive liquid chromatography (HILIC) coupled to a electrospray ionization (ESI) mass spectrometer (MS), in the concentration range 15-20 ${\mu}g/L$. The capability of the method was established using regression analysis and ANOVA. The method performance was evaluated by analyzing real time surface water spiked with 1-dodecyl hydrogen sulfate at 15 ${\mu}g/L$. Combined efficiency of solid phase extraction and MS detection established recovery of 89% in presence of natural matrix. These results point out that HILIC coupled to multistage MS procedures can be a powerful technique for environmental applications concerning the screening of polar contaminants.

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment (물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향)

  • Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2016
  • While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

Recolonization of benthic macroinvertebrates after anthropogenic disturbance in natural streams, South Korea

  • Chun, Seung-Phil;Chon, Seung-Hoon;Lee, Seung-Oh;Im, Jang-Hyuk;Lee, Woo-Kyun;Kim, Myoung-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.228-235
    • /
    • 2015
  • Stream ecosystems are closely related to many human activities. Therefore, streams are affected by anthropogenic disturbances such as riverine development and gravel-mining as well as deterioration of water quality. The goal of this study was to elucidate the recolonization process of the macroinvertebrate community after a small-scale anthropogenic disturbance. Field studies were conducted at three sites in a natural stream. The number of recolonizing species tended to increase slightly over time, exceeding the total species number of the control. Ephemeroptera contributed the most to shaping the recolonizing pattern of the entire community. From the result of changes in dominant species, the early recolonizers of each site were the species that showed more frequent occurrence particulary at each sites. But the late recolonizers are Chironomidae at all the sites commonly. This result implies that the actual differences exist among the recolonizing trends of each benthic macroinvertebrate taxon. Collector-gatherers and scrapers comprised about 70% of the recolonizing species. These results indicate that the recolonizing process of an aquatic community after an artificial disturbance depends on the environmental conditions(particularly substratum composition or organic pollution) of the habitat.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

Assessment of Water Pollution and the Ecological Characteristics of the Singu Reservoir

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1117-1127
    • /
    • 2018
  • This study was carried out to gather basic data for the purpose of proposing a plan to improve the water quality and conserve the aquatic ecosystem of the Singu Agricultural Reservoir in Korea. The water quality, sediment composition, benthic macroinvertebrate distribution, and fish distribution in the Singu Reservoir were analyzed; the reservoir is located close to farmlands, forests, villages, and livestock breeding areas. The results of the water quality analysis are as follows: 5.8~7.8 mg/L for dissolved oxygen, 13.1~20.7 mg/L for chemical oxygen demand, 14.4~18.8 mg/L for suspended solid, 0.96~1.70 mg/L for total nitrogen, 0.07~0.11 mg/L for total phosphorous, and $41.9{\sim}49.8{\mu}g/L$ for $chlorophyll-{\alpha}$. In total, 75 benthic macroinvertebrate specimens belonging to 4 classes, 7 orders, 14 families, and 17 species were recorded. The ecological scores of the benthic macroinvertebrate communities ranged from 11 to 23. Fish specimens recorded belonged to two families and four species. The dominant fish species were Carassius auratus and Pseudorasbora parva, both of which are water-pollutant tolerant species.

Movement Responses of Sludge Worm Tubifex tubifex (Annelida, Oligochaeta) in Three Different Copper Concentrations

  • Hyejin Kang;Mi-Jung Bae;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2022
  • Monitoring and assessing aquatic ecosystems using the behavior of organisms is essential for sustainable ecosystem management. Oligochaetes, which inhabit various freshwater ecosystems, are frequently used to evaluate the environmental conditions of freshwater ecosystems. Tubifex tubifex (Müller, 1774) (Oligochaeta, Tubificidae) is tolerant to organic pollution and has been used to evaluate the toxicity of toxicants, including heavy metals. We studied the behavioral responses of T. tubifex to three different copper concentrations (0.1, 0.5, and 1.0 mg L-1). The specimens were exposed to copper in an observation cage containing 150 mL of dechlorinated water. Movement behavior (diameter, speed, acceleration, meander, and turning rate) was continuously observed for two hours before and after the copper treatments. After the treatments, the diameter shrank and showed rapid twisting movement under all the copper conditions. The turning rate had a positive correlation with meander and acceleration both before and after treatment at all three concentrations, whereas speed and meander had a negative correlation. Length and turning rate also showed a negative correlation. The correlation coefficient between speed and acceleration in the highest copper concentration changed from positive before treatment (r=0.64) to negative (r= -0.52) after treatment. Our results present the possibility of using behavioral parameters to detect copper contamination in freshwater ecosystems.

Ecotoxicity Assessment of Potassium Hydrogen Phthalate and Verification of Standard Reference Toxicity Test Method Using Potassium Hydrogen Phthalate

  • Dong Jin Choi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Phthalates are animal carcinogens. Potassium hydrogen phthalate (KHP), which has the least complicated structure among phthalates, is used for the analysis of total organic carbon and formaldehyde. However, its toxicity has not been confirmed. A 24-hour acute toxicity test was performed using Daphnia magna, a water flea used to evaluate aquatic toxicity owing to its high sensitivity. The lowest observed effect concentration of KHP was found to be 240 mg/L. The effects of phosphorus, nitrogen, and Cr(6+), which are able to be discharged along with KHP, were also confirmed using tests. At 240 mg/L KHP, toxicity increased as phosphorus, nitrogen, and Cr(6+) increased. In addition, tests were performed to confirm the half maximal effective concentration of KHP. Through 10 test repetitions, the average ecotoxicity value was found to be 0.3, the average half maximal effective concentration was 327.75 mg/L, and the coefficient of variation (%) was 3.16%; because the latter value is lower than 25%, which is what is generally suggested for the water pollution standard method, the reproducibility of the tests is sufficient to replace the existing standard reference toxicity test that uses potassium dichromate. In addition, the half maximum effective concentration of potassium hydrogen phthalate is approximately 218 times more than that of potassium dichromate; therefore, toxicity is relatively low. In conclusion, KHP is a feasible alternative to the highly toxic potassium dichromate for performing the standard reference toxicity test.

The Effectiveness of the Dispersant Use during the "Deepwater Horizon" Incident -REVIEW of the Proceedings from 2011 International Oil Spill Conference- (미국 멕시코만 기름유출사고에서 본 유처리제 사용의 효용성 고찰)

  • Cho, Hyun-Jin;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Once oil has spilled, oil spill responders use a variety of countermeasures to reduce the adverse effects of spilled oil on the environment. Mechanical methods of containment and recovery are preferred as the first response when the use of other methods fail or are ineffective. In these cases, the application of oil dispersants shall be use only as a last resort. While effectiveness of dispersants in removing oil form the sea surface is proven, the use of dispersants is controlled in almost all countries due to the toxicity of their active agents and the dispersed oil on the marine environment. However, according to reports, after dispersant application, no significant toxicity to fish or shrimp was observed in the field-collected samples. Moreover, the results also indicate that dispersant-oil mixtures are generally no more toxic to the aquatic test species than oil alone. During the Deepwater Horizon Incident, dispersants were applied to floating oil and injected into the oil plume at depth. These decisions were carefully considered by state and federal agencies, as well as BP, to prevent as much oil as possible from reaching sensitive shoreline habitats. Net Environmental Benefit Analysis for dispersant use assumed that dispersants appear to prevent long-term contamination resulting absence of oil in the substrate and will benefit marine wildlife by decreasing the risk of significant contamination to feathers or fur. Further study to use dispersants with scientific baseline is needed for our maritime environment which consistently threaten huge oil spill incidents occurrence.