• Title/Summary/Keyword: aquatic environmental samples

Search Result 179, Processing Time 0.027 seconds

Determination of personal care products in aquatic environmental samples by GC/MS (GC/MS를 이용한 수질환경시료 중 personal care products의 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • Personal care products are a diverse group of synthetic organic chemicals such as antimicrobial compounds, UV filters and organo-phosphate flame retardants and derived from individual usages of soaps, toothpaste and cosmetics. It has been detected in municipal sewage effluent and various environmental samples such as surface water, marine, soil, sediment and aquatic biota in many countries. The occurrence of personal care products in environmental samples could negatively impact the health of the ecosystem and humans, due to persistent, long-term chronic exposure of aquatic organisms. In this study, fifteen personal care products in aquatic environmental samples were determined by gas chromatography-mass spectrometry (GC-MS) with liquidliquid extraction (LLE). Method detection limits were in the range of $0.004\sim0.273\;{\mu}g/L$. Two compounds (TCEP, TCPP) were detected in surface waters and seven compounds (triclosan, 4-MBC, EHMC, BP-3, TCEP, TPP, TBEP) were detected in sewage treatment plants (STP) influents or effluents.

Assessment of Korean Water Quality Standards for Effluent Discharged from the Dye Industry Based on Acute Aquatic Toxicity Tests Using Microbes and Macroinvertebrates (염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구)

  • Kim, Young-Hee;Lee, Min-Jung;Choi, Kyung-Ho;Eo, Soo-Mi;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Acute aquatic toxicity of effluents discharged from five dyeing plants in Gyeong-gi province were evaluated to assess whether the current Korean water quality standards(KWQS) could protect aquatic life. Chemical analyses of all parameters regulated under KWQS, except for E-coli, were also carried out to determine regulation compliance of the samples. All the effluent samples were satisfied with KWQS except for the color in only one sample. In acute Daphnia magna toxicity tests, significant mortality was observed in one of five samples and EC50 was 12.1%(95% confidence interval 9.1-16.2), which was in compliance with KWQS. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from three out of five plants, two of which were in compliance with KWQS. The agreement between regulation compliance of chemical concentrations of effluent and observed toxicity from various biological toxicity tests was very poor to fair (kappa = 0.194~0.250). The data presented suggest that exposure to dyeing wastewater which were in compliance with Korean water quality standards may not be safe to aquatic biota, and multiple tropical levels should be considered in aquatic toxicity monitoring of dyeing industry.

Determination of acidic pharmaceuticals in aquatic environmental samples by LC/ESI-MS/MS (LC/ESI-MS/MS를 이용한 수질 환경 시료 중 산성의약물질 분석방법 비교)

  • Sim, Young-Eun;Cho, Hyun-Woo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.191-200
    • /
    • 2008
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aquatic environmental samples. Therefore, it required rapidly and certainly analytical method for pharmaceuticals which are existed in environment. In this study, Liquid chromatography/tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) was used to measure the concentrations of 7 pharmaceuticals (quinoxaline-2-carboxylic acid, acetylsalicylic acid, diclofenac-Na, naproxen, ibuprofen, mefenamic acid, talniflumate) from environmental water or aquatic samples simultaneously. Effective sample clean-up by solid-phase extraction (SPE) prior to LC-MS/MS analysis is necessary. For further purification, Mixed Cation eXchange (MCX) and Hydrophilic-Lipophilic Balance (HLB) solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. LODs (Limits of Detection) and MDLs (Method Detection Limits) for the spiked sample in fresh water were in the range of 0.05~1.50 pg/mL and 0.17~4.90 pg/mL, respectively. The absolute recovery in the concentration of 1.0 ng/mL were between 81.9 and 116.3%. The acidic pharmaceuticals were detected in concentrations of 0.018~16.925 ng/mL in aquatic environmental samples.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF

Microbial contamination including Vibrio cholerae in fishery auction markets in West Sea, South Korea

  • Choi, Yukyung;Lee, Yewon;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Oh, Hyemin;Shin, Il-Shik;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.11
    • /
    • pp.26.1-26.7
    • /
    • 2019
  • Background: The monitoring of pathogens of fishery auction markets is important to obtain safe fishery products regarding hygiene and sanitation. In this study, aerobic, coliform, Escherichia coli, and Vibrio cholerae were monitored in the fishery products and environmental samples obtained from fishery auction markets. Methods: The fishery products (flounder, octopus, skate, rock cod, sea bass, snail, monkfish, flatfish, comb pen shell, corb shell, conger eel, hairtail, croaker, and pilchard) were placed in filter bags, and the environmental samples (samples from the water tanks at the fishery auction markets, seawater from the fishery distribution vehicles, ice from wooden or plastic boxes, and surface samples from wooden and plastic boxes used for fish storage) were collected. Aerobic bacteria, E. coli, and coliform in the samples were enumerated on aerobic count plates and E. coli/coliform count plates, respectively. For V. cholerae O1 and V. cholerae non-O1 quantification, most probable number (MPN)-PCR analysis was performed. Results: Aerobic and coliform bacteria were detected in most samples, but E. coli was not detected. Wooden boxes were contaminated with high levels of aerobic and coliform bacteria in all seasons (spring, summer, and fall). During fall, V. cholerae non-O1 were detected in snails, hairtails, croakers, flatfishes, pilchards, plastic boxes, and water samples. Conclusions: These results indicate an increased prevalence of V. cholerae contamination in fishery products in fall, including food contact samples, which can be vehicles for cross-contamination.

Mercury Biogeochemical Cycling and Bioaccumulation in Aquatic Environments: A Review

  • Kim, Eun-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.180-183
    • /
    • 2007
  • Over the last century the mercury (Hg) concentration in the environment has been increased by human activities with inputs from sources such as atmospheric deposition, urban runoff, and industrial effluents. Mercury can be transformed to methylmercury (MeHg) in anaerobic conditions by sulfate reducing bacteria (SRB) and sediments are the principal location for MeHg production in aquatic environments. Interest in bioaccumulation of Hg and MeHg into lower trophic levels of benthic and pelagic organisms stems from public health concerns as these organisms provide essential links for higher trophic levels of food chains such as fish and larger invertebrates. Fish consumption is the major exposure route of MeHg to humans. Recently, it was reported that blood samples in Korea showed much higher Hg levels (5-8 times) than those in USA and Germany. Although this brings much attention to Hg research in Korea, there are very few studies on Hg biogeochemical cycling and bioaccumulation in aquatic environments. Given the importance of Hg methylation and MeHg transfer through food chains in aquatic environments, it is imperative that studies should be done in much detail looking at the fate, transport, and bioaccumulation of Hg and MeHg in the environment. Moreover, there should be long-term monitoring plans in Korea to evaluate the environmental and health effects of Hg and MeHg.

C:N:P stoichiometry of particulate and dissolved organic matter in river waters and changes during decomposition

  • Islam, Mohammad Jahidul;Jang, Changwon;Eum, Jaesung;Jung, Sung-min;Shin, Myoung-Sun;Lee, Yunkyoung;Choi, Youngsoon;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Background: Stoichiometry plays an important role in understanding nutrient composition and cycling processes in aquatic ecosystems. Previous studies have considered C:N:P ratios constant for both DOM (dissolved organic matter) and POM (particulate organic matter). In this study, water samples were collected in the six major rivers in Korea and were incubated for 20 days. C:N:P ratios were determined during the time course of the incubations. This allowed us to examine the changes in N and P contents of organic matter during decomposition. Results: POM and DOM showed significant differences in N and P content and the elemental ratios changed during the course of decomposition; DOM showed higher C:N and C:P ratios than POM, and the C:N and C:P ratios increased during decomposition, indicating the preferential mineralization of P over N and N over C. Conclusions: The N and P contents of organic matter in aquatic ecosystem are far from constant and vary significantly during decomposition. More detailed information on the changes in C:N:P ratios will provide improved understanding of decomposition processes and improved modeling of aquatic ecosystems.

Trifluralin in aquatic products: QuEChERS and Gas chromatography-tandem mass spectrometry for trace amount detection

  • Le-Thi Anh-Dao;Do Minh-Huy;Vo Hong-Phong;Nguyen Cong-Hau
    • Analytical Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.205-215
    • /
    • 2023
  • In the present study, an analytical method was proposed for detecting trifluralin in aquatic products at trace concentrations. The method employed QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) as the sample preparation and measurement, respectively. The effect of the aqueous phase volume used in the QuEChERS was demonstrated, and the ratio of 10:10 (mL) between water and acetonitrile phase was used for 5 g of sample. Besides, dSPE using C18 and primary-secondary amine (PSA) was applied to remove the potential interferences from the food matrices, indicating no remarkable analyte loss. The linear range was built up from 0.50 ㎍ L-1 to 3.0 ㎍ L-1 (R2 = 0.9993). Other criteria, i.e., repeatability (RSDr = 0.86-1.96 %), reproducibility (RSDR = 1.09-2.01 %), and recovery (over 90 %), were in accordance with Appendix F of AOAC (2016) for method performance. Although no trifluralin was detected for the commercial samples (fish, shrimp, and breaded shrimp), the spiked samples performed favorable recoveries and precision.

Molecular Monitoring of Plankton Diversity in the Seonakdong River and Along the Coast of Namhae (분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석)

  • Kim, Bo-Kyung;Lee, Sang-Rae;Lee, Jin-Ae;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The biodiversity of eukaryotic plankton has commonly been used to evaluate the status of aquatic ecosystems. Therefore, an accurate and rapid method for species identification is needed to reveal the biodiversity of environmental water samples. To date, molecular methods have provided a great deal of information that has enabled identification of the hidden biodiversity in environmental samples. In this study, we utilized environmental polymerase chain reaction (PCR) and constructed the 18S nuclear ribosomal RNA clone library from environmental water samples in order to develop more efficient methods for species identification. For the molecular analysis, water samples were collected from the Seonakdong River (Gimhae Bridge) and the coast of Namhae,(Namhaedo). Colony PCR and restriction fragment length polymorphism of PCR (PCR-RFLP) were then adopted to isolate unique clones from the 18S rDNA clone library. Restriction fragment length polymorphism pattern analysis of the Gimhae Bridge sample revealed 44 unique clones from a total of 60 randomly selected clones, while analysis of the Namhae sample revealed 27 unique clones from 150 clones selected at random. A BLAST search and subsequent phylogenetic analysis conducted using the sequences of these clones revealed hidden biodiversity containing a wide range of taxonomic groups (Heterokontophyta (7), Ciliophora (23), Dinophyta (1), Chytridiomycota (1), Rotifera (1) and Arthropoda (11) in the Gimhae Bridge samples Ciliophora (4), Dinophyta (3), Cryptophyta (1), Arthropoda (19) in the Namhae samples). Therefore, the molecular monitoring method developed here can provide additional information regarding the biodiversity and community structure of eukaryotic plankton in environmental samples and helps construct a useful database of biodiversity for aquatic ecosystems.

Food and feeding habits of Labeobarbus intermedius in the recently built Ribb Reservoir, Northwest Ethiopia

  • Minwyelet Mingist;Amare Dessie;Dagnew Mequanent;Degsera Aemro
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.8
    • /
    • pp.482-490
    • /
    • 2023
  • Food and feeding habits of Labeobarbus intermedius were studied from the newly constructed Ribb Reservoir, Ethiopia during the dry (December-March) season and wet season (June-August) of 2021. The objective of the study was to determine the diet composition, seasonal variation, and ontogenetic dietary shift in the diets of the dominant cyprinid fish in Ribb Reservoir. In this study, frequency of occurrence and volumetric analysis methods were used to present the results. From a total of 203 fish samples, 132 (65%) guts contained food items. Macrophytes (29.4%), phytoplankton (27.2%), detritus (14.8%), and insects (13.6%) were the major food items in the diets volumetrically. During the dry season, L. intermedius was mainly dependent on phytoplankton (58.2%), insects (15.2%), and zooplankton (13.7%) volumetrically. Whereas, macrophytes (50.3%) and detritus (23.3%) were the dominant food items in the wet season. The frequency occurrence and volumetric contribution of the diets of L. intermedius varied significantly (χ2 test, p < 0.05) between seasons. Schoener's diet overlap index revealed a slight ontogenetic dietary shift in the diets of L. intermedius. While insects, nematodes, and zooplankton were the main diets of small-sized L. intermedius, macrophytes and detritus were ingested by large-sized L. intermedius. Generally, L. intermedius fed both plant and animal-origin food items and is considered an omnivorous feeder in Ribb Reservoir.