• 제목/요약/키워드: apriori algorithm

검색결과 108건 처리시간 0.021초

Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구 (A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm)

  • 김용
    • 한국비블리아학회지
    • /
    • 제23권4호
    • /
    • pp.283-308
    • /
    • 2012
  • 정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가와 함께, 이용자에게 있어서 적합한 정보의 획득을 위한 방법이 절실하게 요구되고 있다. 이를 위하여 정보검색 및 여과시스템이 개발 및 발전되어 왔다. 또한 보다 적극적인 서비스를 제공하기 위한 방법으로써 개인화 정보추천서비스에 대한 요구가 높아지고 있다. 본 연구에서는 도서관에서 적극적인 정보서비스를 위한 방법으로 이용자의 관심과 선호도에 적합한 정보를 제공하기 위한 연관규칙 기반의 개인화 정보추천시스템을 설계 및 구현하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로써 대용량 콘텐츠 및 이용자 환경에서 이용자의 묵시적 정보이용행위에 관한 정보를 포함하고 있는 로그파일을 통하여 연관규칙 생성을 위해 요구되는 항목을 추출 및 변환하여 연관규칙 생성프로그램을 통하여 연관규칙의 생성 및 정보추천을 위한 방법을 제안하였다.

유사도와 연관규칙분석을 이용한 암호화폐 추천모형 (Cryptocurrency Recommendation Model using the Similarity and Association Rule Mining)

  • 김예찬;김진영;김채린;김경재
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.287-308
    • /
    • 2022
  • 최근 비트코인을 필두로한 암호화폐의 폭발적인 성장이 금융 시장의 주요 이슈로 떠오르고 있다. 이에 전 세계적인 암호화폐 투자의 관심이 증가하고 있지만, 24시간 365일 운영되는 시장과 가격 변동성, 그리고 기하 급수적으로 증가하고 있는 암호화폐 종류는 암호화폐 투자자들에게 리스크로 제공되고 있어, 특히 암호화폐 포트폴리오를 구상하는데 있어 추천에 적합하지 않는 암호화폐들을 구분하여 투자자들의 리스크를 감소시킬 수 있는 연구의 필요성이 제기되고 있다. 이에 본 논문은 기존에 있었던 단순히 암호화폐 가격의 미래를 예측하여 수익률을 극대화 하거나, 수익률에 초점을 맞추어 암호화폐 포트폴리오를 구성하는 연구들과 달리, 투자자들의 성향을 반영하고, 투자에 적합한 암호화폐를 머신러닝 기법 중 하나인 Apriori 알고리즘을 활용하여 추천하되, 추천에 적합한 알트코인들을 비트코인의 유사도와 연관규칙을 중심으로 선별하여, 투자자들의 리스크를 감소시킬 수 있는 적합한 추천 방식과 해석을 제시한다.

Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석 (An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm)

  • 김진희;황두희;이상숙
    • 디지털융복합연구
    • /
    • 제20권1호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구는 학습자 특성(성별 및 학교 급)에 따른 온라인 수업 유형 선호도를 파악하고자 하는데 그 목적이 있다. 이를 위하여 전국 17개 지역의 초·중·고등학교 학생 4,803명을 대상으로 설문조사를 실시하였다. 이후, 유효데이터인 4,524명 학생들의 성별 및 학교급을 기반한 온라인 수업 유형 선호도 패턴을 확인하기 위해 Apriori 알고리즘을 이용한 연관규칙 분석을 실시하였다. 연구결과 초등 7개, 중등 4개, 고등 5개 등 총 16개의 규칙을 도출하였으며, 학교급과 무관하게 여학생들은 메이커활동 중심 수업을, 초·중 남학생은 가상체험중심 수업을 공통적으로 선호하였다. 보다 구체적으로, 초등학교 남학생은 SW중심수업을, 여학생은 메이커활동 중심 수업을 선호하였으며, 중학생의 경우 남여 모두 가상체험중심 수업을 선호하였다. 반면 고등학생은 교과별 강의중심에 대한 선호도가 높았다. 이러한 연구결과는 학습의 주체자인 학생이 가진 온라인 수업의 요구를 설명하는 실증적 근거로서 제시될 수 있다. 또한, 본 연구는 향후 온라인 수업의 다각화를 위한 개선방향을 제시, 탐색하는 기초자료로 활용될 수 있을 것으로 기대한다. 이상의 연구결과를 바탕으로 추후 연구에서는 다양한 온라인 수업 활동 및 모델 설계, 온라인 수업을 지원하는 플랫폼 개발, 여학생의 이공계 진로동기 형성과정에 대한 심층적 분석이 계속되어야 할 것이다.

웹 로그와 구매 DB를 이용한 개인화 시스템에 관한 연구 (A Study on Personalization System Using Web Log and Purchasing Database)

  • 김영태;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.23-26
    • /
    • 2003
  • In this paper, a methodolgy for customizing web pages for indivisual users is suggested. It shows an efficient way to personalize web pages by predicting one's site access pattern. In addition, the prediction can reflect one's tendency after actual purchase. By using the APRIORI algorithm, one of the association rule search methods, the associativity among the purchase items can be inferred. This inferrence is based on the log data in a web server and database about purchase. Finally, a web page which contains the relationship, relative links on other web pages, and inferred items can be generated after this process.

  • PDF

유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천 (Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment)

  • 김재경;오희영;권오병
    • 한국IT서비스학회지
    • /
    • 제6권2호
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

사용자 웹 사이트 방문 시간을 고려한 연관 규칙 (Association Rule by Considering Users Web Site Visiting Time)

  • 강형창;김철수;이동철
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.104-109
    • /
    • 2006
  • We can offer suitable information to users analyzing the pattern of users. An association rule is one of data mining techniques which can discover the pattern. We use an association rule which considers the web page visiting time and we should the pattern analyse of users. The offered method puts the weights in Web page visiting time of the user and produces an association rule. Weight is web page visiting time unit divide to total of web page visiting time. We offer rather meaningful result the association rule by Apriori algorithm. This method that proposes in the paper offers rather meaningful result Apriori algorithm

Big Data Analysis in School Adjustment Factors using Data Mining

  • Ko, Sujeong
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.87-97
    • /
    • 2019
  • Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.

상품간 연관 규칙의 효율적 탐색 방법에 관한 연구 : 인터넷 쇼핑몰을 중심으로 (A Fast Algorithm for Mining Association Rules in Web Log Data)

  • 오은정;오상봉
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.621-626
    • /
    • 2003
  • Mining association rules in web log files can be divided into two steps: 1) discovering frequent item sets in web data; 2) extracting association rules from the frequent item sets found in the previous step. This paper suggests an algorithm for finding frequent item sets efficiently The essence of the proposed algorithm is to transform transaction data files into matrix format. Our experimental results show that the suggested algorithm outperforms the Apriori algorithm, which is widely used to discover frequent item sets, in terms of scan frequency and execution time.

  • PDF

잡음 ARMA 프로세스의 적응 매개변수추정 (Adaptive Parameter Estimation for Noisy ARMA Process)

  • 김석주;이기철;박종근
    • 대한전기학회논문지
    • /
    • 제39권4호
    • /
    • pp.380-385
    • /
    • 1990
  • This Paper presents a general algorithm for the parameter estimation of an antoregressive moving average process observed in additive white noise. The algorithm is based on the Gauss-Newton recursive prediction error method. For the parameter estimation, the output measurement is modelled as an innovation process using the spectral factorization, so that noise free RPE ARMA estimation can be used. Using apriori known properties leads to algorithm with smaller computation and better accuracy be the parsimony principle. Computer simulation examples show the effectiveness of the proposed algorithm.

데이터마이닝을 활용한 성공적 노후 예측 키워드 분석 (An Analysis on the Predictor Keyword of Successful Aging: Focused on Data Mining)

  • 홍서연
    • 한국콘텐츠학회논문지
    • /
    • 제20권3호
    • /
    • pp.223-234
    • /
    • 2020
  • 본 연구는 Hong(2019)의 연구에서 도출된 한국 노인의 성공적인 노후에 영향을 주는 예측 키워드 32개를 중심으로 데이터마이닝의 Apriori 알고리즘을 활용하여 연관관계 규칙을 분석하였다. 그리고 한국 노인의 성공적 노후에 영향을 주는 예측변수들의 규칙 및 패턴을 파악하기 위한 지표로 지지도, 신뢰도, 향상도를 활용하였다. 본 연구의 분석은 R version 3. 5. 1 프로그램으로 분석을 실시하였으며, arulesViz 패기지와 visNetwork 패키지로 시각화하였다. 연구결과 한국 노인들의 성공적인 노후와 연관성이 높은 예측변수는 '취미', '봉사', '준비', '운동'으로 나타났다. 그리고 한국 노인의 성공적 노후를 고려할 때 가장 우선적으로 고려해야 할 변수는 '취미' 이며 그 다음 '봉사', 준비', 운동'의 순으로 고려해야 한다는 결과를 얻었다.