• 제목/요약/키워드: apriori algorithm

검색결과 108건 처리시간 0.022초

Data Mining for Uncertain Data Based on Difference Degree of Concept Lattice

  • Qian Wang;Shi Dong;Hamad Naeem
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.317-327
    • /
    • 2024
  • Along with the rapid development of the database technology, as well as the widespread application of the database management systems are more and more large. Now the data mining technology has already been applied in scientific research, financial investment, market marketing, insurance and medical health and so on, and obtains widespread application. We discuss data mining technology and analyze the questions of it. Therefore, the research in a new data mining method has important significance. Some literatures did not consider the differences between attributes, leading to redundancy when constructing concept lattices. The paper proposes a new method of uncertain data mining based on the concept lattice of connotation difference degree (c_diff). The method defines the two rules. The construction of a concept lattice can be accelerated by excluding attributes with poor discriminative power from the process. There is also a new technique of calculating c_diff, which does not scan the full database on each layer, therefore reducing the number of database scans. The experimental outcomes present that the proposed method can save considerable time and improve the accuracy of the data mining compared with U-Apriori algorithm.

휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘 (An Efficient Clustering Algorithm based on Heuristic Evolution)

  • 류정우;강명구;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.80-90
    • /
    • 2002
  • 클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.

다차원 학습경로 패턴 분석 시스템의 설계 및 구현 (Design and Implementation of Multi-dimensional Learning Path Pattern Analysis System)

  • 백장현;김영식
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.461-470
    • /
    • 2005
  • 학습자 스스로 학습내용, 학습방법, 학습순서 등을 결정하고 재구조화할 수 있는 학습자 통제 환경에서는 학습자의 특성을 고려한 개별화 학습이 가능하다. 본 연구에서는 웹 기반 교수 학습 과정에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습경로 패턴을 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습경로 패턴을 갖는 학습자들로 그룹화하였다. 이를 기반으로 학습자 개인에게 학습경로, 학습내용. 학습매체, 보조학습콘텐츠, 자료제시유형 등을 다차원적으로 제공하기 위한 다차원 학습경로 패턴 분석 시스템을 설계하고 구현하였다. 개발된 시스템에 대하여 만족도 검사를 실시한 결과 보조학습콘텐츠에 대한 만족도가 "매우 만족" $24.5\%$, "만족" $35.17\%$로 가장 높게 나타났다. 학습자 수준별로는 하위수준의 학습자에 대한 만족도가 "매우 만족" $20.2\%$, "만족" $31.2\%$로 상위수준의 학습자 "매우 만족" $18.4\%$, "만족" $28.54\%$ 보다 높게 나타났다. 개발된 시스템은 드릴-업, 드릴-다운 등의 OLAP 기술을 이용하여 학습자들에게 다양한 각도로 다차원적으로 의미 있는 정보를 제공할 것으로 기대된다.

연관관계 규칙을 이용한 학생 유지율 관리 방안 연구 (A Study on Management of Student Retention Rate Using Association Rule Mining)

  • 김종만;이동철
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.67-77
    • /
    • 2018
  • 최근 학령인구 감소에 따라 많은 문제점들이 나타나고 있다. 우리나라는 인구대비 가장 많은 대학을 보유하고 있기 때문에 각 대학의 생존에 필요한 최소한의 학생 유지율 관리가 점점 더 중요해 지고 있다. 따라서 본 연구는 계속되는 학력인구의 감소에 따라 각 대학들이 생존 방안으로 학생 유지율의 적절한 관리 방안을 모색한다. 이를 위하여 특정 대학에 입학한 학생들을 대상으로 성별, 출신고, 출신지역, 성적, 졸업여부 등의 데이타를 분석하여, 학생들이 입학에서 졸업에 이르기까지 지속적으로 유지될 수 있는 학생 유지율을 관리하기 위한 기본적인 방향이 어떤 것인지 알아본다. 또한, 최적의 입력 변수를 파악하고, 최적의 입력 파라메터를 기초로 apriori 알고리즘을 이용하여 연관 분석을 실행하여 유지율 관리에 가장 적합한 자료를 수집할 수 있도록 한다. 이를 바탕으로 각 대학들이 학생들을 모집하고 유지하는데 도움이 되도록 가장 효율이 높은 딥러닝(Deep Learning) 모듈을 개발하기 위한 기초 자료로 만들고자 한다. 의사결정트리를 활용하여 졸업여부를 측정한 결과는 딥러닝의 정확도 보다 낮은 75%로 나타났다. 의사결정트리에서 졸업여부를 결정하는 요인은 일반고를 졸업하고, 도시지역에 거주하면서 여성이면서 성적이 높은 학생들이 졸업확율이 높은 것으로 나타났으며 결과적으로 의사결정트리 보다는 개발된 딥러닝듈이 더 효율적으로 학생들의 졸업여부를 평가할 수 있는 모델로 나타났다.

시계열 데이터로부터의 경향성 기반 순차패턴 탐색 (Trend-based Sequential Pattern Discovery from Time-Series Data)

  • 오용생;이동하;남도원;이전영
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.27-45
    • /
    • 2001
  • 데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.

  • PDF

적응적 필터링에 의한 투사영상 복원에 관한 연구 (A Study on Projection Image Restoration by Adaptive Filtering)

  • 김정희;김광익
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.119-128
    • /
    • 1998
  • SPECT 장치는 감마 카메라로 촬영된 일련의 투사영상을 재조합, 재구성하여 횡단면 단층상을 생성하는데, 이때 투사 영상을 획득하는 과정에서 여러 물리적 요소들이 개입되어 투사 영상의 왜곡을 가져온다. 이들 변질 요인들 가운데서도 광자수 제한에 따른 노이즈 변질이 가장 심각한 요인이기 때문에, 투사 영상에 대한 필터링은 노이즈 평활화(smoothing)가 가장 기본적인 방법이다. 그러나 단순한 저역통과 필터링(low-pass filtering)이 투사영상의 윤곽선이나 기타영상구조들을 번지게 함으로써 재구성 영상의 질을 떨어 뜨린다는 사실은 이미 알려져 있다. 주요 영상 구조들을 효과적으로 유지하면서도 노이즈를 억제시키기 위한 한 접근으로 적응적 필터링 기법이 많은 연구자들의 관심을 모으고 있다. 본 논문에서는, 재구성 영상에서의 '최소 검출가능 이상조직의 검출 신뢰도 향상'이라는 관점에서 최적 필터를 설계하였던 이전 연구와 관련하여, 주어진 물리적 조건하에서의 SPECT 이상조직 검출능에 근거된 투사 영상 복원을 위한 적응적 필터링 기법을 제안한다. 결과적으로, 제안된 필터링 알고리즘은 SPECT 영상 재구성시 우수한 이상조직 검출능을 보였으며, 특히 다양한 대조도의 이상조직들을 포함하고 있는 모형 실험에서 보여준 본 필터링 알고리즘의 이상조직 검출능 결과는 실제 SPECT데이터 적응시 좋은 결과를 기대할 수 있게 하였다.

  • PDF

트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석 (Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints)

  • 윤은일;편광범
    • 인터넷정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-74
    • /
    • 2015
  • 최근, 아이템들의 가치를 고려한 빈발 아이템셋 마이닝 방법은 데이터 마이닝 분야에서 가장 중요한 이슈 중 하나로 활발히 연구되어왔다. 아이템들의 가치를 고려한 마이닝 기법들은 적용 방법에 따라 크게 가중화 빈발 아이템셋 마이닝, 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝, 유틸리티 아이템셋 마이닝으로 구분된다. 본 논문에서는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝들에 대해 실증적인 분석을 수행한다. 일반적으로 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법들은 데이터베이스 내 아이템들의 가치를 고려함으로써 트랜잭션 가중치를 계산한다. 또한, 그 기법들은 계산된 각 트랜잭션의 가중치를 바탕으로 가중화 빈발 아이템셋들을 마이닝 한다. 트랜잭션 가중치는 트랜잭션 내에 높은 가치의 아이템이 많이 포함 될수록 높은 값으로 나타나기 때문에 우리는 각 트랜잭션의 가중치의 분석을 통해 그 가치를 파악할 수 있다. 우리는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법 중에서 가장 유명한 알고리즘인 WIS와 WIT-FWIs, IT-FWIs-MODIFY, WIT-FWIs-DIFF의 장 단점을 분석하고 각각의 성능을 비교한다. WIS는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝의 개념과 그 기법이 처음 제안된 알고리즘이며, 전통적인 빈발 아이템셋 마이닝 기법인 Apriori를 기반으로 하고 있다. 또 다른 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 방법인 WIT-FWIs와 WIT-FWIs-MODIFY, WIT-FWIs-DIFF는 가중화된 빈발 아이템셋 마이닝을 더 효율적으로 수행하기 위해 격자구조(Lattice) 형태의 특별한 저장구조인 WIT-tree를 이용한다. WIT-tree의 각 노드에는 아이템셋 정보와 아이템셋이 포함된 트랜잭션의 ID들이 저장되며, 이 구조를 사용함으로써 아이템셋 마이닝 과정에서 발생되는 다수의 데이터베이스 스캔 과정이 감소된다. 특히, 전통적인 알고리즘들이 수많은 데이터베이스 스캔을 수행하는 반면에, 이 알고리즘들은 WIT-tree를 이용해 데이터베이스를 오직 한번만 읽음으로써 마이닝과정에서 발생 가능한 오버헤드 문제를 해결한다. 또한, 공통적으로 길이 N의 두 아이템셋을 이용해 길이 N+1의 새로운 아이템셋을 생성한다. 먼저, WIT-FWIs는 각 아이템셋이 동시에 발생되는 트랜잭션들의 정보를 활용하는 것이 특징이다. WIT-FWIs-MODIFY는 조합되는 아이템셋의 정보를 이용해 빈도수 계산에 필요한 연산을 줄인 알고리즘이다. WIT-FWIs-DIFF는 두 아이템셋 중 하나만 발생한 트랜잭션의 정보를 이용한다. 우리는 다양한 실험환경에서 각 알고리즘의 성능을 비교분석하기 위해 각 트랜잭션의 형태가 유사한 dense 데이터와 각 트랜잭션의 구성이 서로 다른 sparse 데이터를 이용해 마이닝 시간과 최대 메모리 사용량을 평가한다. 또한, 각 알고리즘의 안정성을 평가하기 위한 확장성 테스트를 수행한다. 결과적으로, dense 데이터에서는 WIT-FWIs와 WIT-FWIs-MODIFY가 다른 알고리즘들보다 좋은 성능을 보이고 sparse 데이터에서는 WIT-FWI-DIFF가 가장 좋은 효율성을 갖는다. WIS는 더 많은 연산을 수행하는 알고리즘을 기반으로 했기 때문에 평균적으로 가장 낮은 성능을 보인다.

구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축 (Development of Intelligent Job Classification System based on Job Posting on Job Sites)

  • 이정승
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.123-139
    • /
    • 2019
  • 주요 구인구직사이트의 직무분류체계가 사이트마다 상이하고 SW분야에서 제안한 'SQF(Sectoral Qualifications Framework)'의 직무분류체계와도 달라 SW산업에서 SW기업, SW구직자, 구인구직사이트가 모두 납득할 수 있는 새로운 직무분류체계가 필요하다. 본 연구의 목적은 주요 구인구직사이트의 구인정보와 'NCS(National Competaency Standars)'에 기반을 둔 SQF를 분석하여 시장 수요를 반영한 표준 직무분류체계를 구축하는 것이다. 이를 위해 주요 구인구직사이트의 직종 간 연관분석과 SQF와 직종 간 연관분석을 실시하여 직종 간 연관규칙을 도출하고자 한다. 이 연관규칙을 이용하여 주요 구인구직사이트의 직무분류체계를 맵핑하고 SQF와 직무 분류체계를 맵핑함으로써 데이터 기반의 지능형 직무분류체계를 제안하였다. 연구 결과 국내 주요 구인구직사이트인 '워크넷,' '잡코리아,' '사람인'에서 3만여 건의 구인정보를 open API를 이용하여 XML 형태로 수집하여 데이터베이스에 저장했다. 이 중 복수의 구인구직사이트에 동시 게시된 구인정보 900여 건을 필터링한 후 빈발 패턴 마이닝(frequent pattern mining)인 Apriori 알고리즘을 적용하여 800여 개의 연관규칙을 도출하였다. 800여 개의 연관규칙을 바탕으로 워크넷, 잡코리아, 사람인의 직무분류체계와 SQF의 직무분류체계를 맵핑하여 1~4차로 분류하되 분류의 단계가 유연한 표준 직무분류체계를 새롭게 구축했다. 본 연구는 일부 전문가의 직관이 아닌 직종 간 연관분석을 통해 데이터를 기반으로 직종 간 맵핑을 시도함으로써 시장 수요를 반영하는 새로운 직무분류체계를 제안했다는데 의의가 있다. 다만 본 연구는 데이터 수집 시점이 일시적이기 때문에 시간의 흐름에 따라 변화하는 시장의 수요를 충분히 반영하지 못하는 한계가 있다. 계절적 요인과 주요 공채 시기 등 시간에 따라 시장의 요구하는 변해갈 것이기에 더욱 정확한 매칭을 얻기 위해서는 지속적인 데이터 모니터링과 반복적인 실험이 필요하다. 본 연구 결과는 향후 SW산업 분야에서 SQF의 개선방향을 제시하는데 활용될 수 있고, SW산업 분야에서 성공을 경험삼아 타 산업으로 확장 이전될 수 있을 것으로 기대한다.