• Title/Summary/Keyword: approximation-free

Search Result 227, Processing Time 0.028 seconds

Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems

  • Zhang, Zan;Liew, K.M.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.123-143
    • /
    • 2010
  • The essential idea of the element-free Galerkin method (EFG) is that moving least-squares (MLS) approximation are used for the trial and test functions with the variational principle (weak form). By using the weighted orthogonal basis function to construct the MLS interpolants, we derive the formulae for an improved element-free Galerkin (IEFG) method for solving three-dimensional problems in linear elasticity. There are fewer coefficients in improved moving least-squares (IMLS) approximation than in MLS approximation. Also fewer nodes are selected in the entire domain with the IEFG method than is the case with the conventional EFG method. In this paper, we selected a few example problems to demonstrate the applicability of the method.

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

Meshfree/GFEM in hardware-efficiency prospective

  • Tian, Rong
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.197-210
    • /
    • 2013
  • A fundamental trend of processor architecture evolving towards exaflops is fast increasing floating point performance (so-called "free" flops) accompanied by much slowly increasing memory and network bandwidth. In order to fully enjoy the "free" flops, a numerical algorithm of PDEs should request more flops per byte or increase arithmetic intensity. A meshfree/GFEM approximation can be the class of the algorithm. It is shown in a GFEM without extra dof that the kind of approximation takes advantages of the high performance of manycore GPUs by a high accuracy of approximation; the "expensive" method is found to be reversely hardware-efficient on the emerging architecture of manycore.

An Investigation on the Computing Offsets of Free form Curve using the Biarc Approximation Method (이중원호 근사법을 이용한 자유형상곡선의 오프셋 계산에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.76-83
    • /
    • 2005
  • In this study a general method for computing offsets of free form curves is presented. In the method arbitrary free form curve is approximated with point series considering required tolerance. The point series are offset precisely using the normal vectors computed at each point and loop removal is carried out by the newly suggested algorithm. The resulting offset points are transformed to lines and arcs using the biarc approximation method. Tangent vectors for approximation of discrete points data are calculated by traditional local interpolation scheme. In order to show the validity and generality of the proposed method , various of offsettings are carried our for the base curves with complex shapes.

Power System Stabilizer using the Free Model

  • Kim, Ho-Chan;Oh, Seong-Bo;Lee, Kwang-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.3-139
    • /
    • 2001
  • The free-model concept is introduced as an alternative intelligent system technique to design a controller with input and output data only. The idea of free model comes from the Taylor series approximation, where an output can be estimated when such data as position, velocity, and acceleration are known. The parameters in the free model can be estimated using the input-output data and a controller can be designed based on the free model. The free model thus developed is shown to be controllable, observable, and robust. The accuracy of the free-model approximation can be improved by increasing the observation window and the order of the free model. The LQR method is applied to the free model to design power system stabilizers ...

  • PDF

Numerical Comparisons for the Null Distribution of the Bagai Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.267-276
    • /
    • 2012
  • Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussianpolynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple explicit representation of the approximated density function. We also discuss the details of computations.

A Framework for Managing Approximation Models in place of Expensive Simulations in Optimization (최적화에서의 근사모델 관리기법의 활용)

  • 양영순;장범선;연윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.159-167
    • /
    • 2000
  • In optimization problems, computationally intensive or expensive simulations hinder the use of standard optimization techniques because the computational expense is too heavy to implement them at each iteration of the optimization algorithm. Therefore, those expensive simulations are often replaced with approximation models which can be evaluated nearly free. However, because of the limited accuracy of the approximation models, it is practically impossible to find an exact optimal point of the original problem. Significant efforts have been made to overcome this problem. The approximation models are sequentially updated during the iterative optimization process such that interesting design points are included. The interesting points have a strong influence on making the approximation model capture an overall trend of the original function or improving the accuracy of the approximation in the vicinity of a minimizer. They are successively determined at each iteration by utilizing the predictive ability of the approximation model. This paper will focuses on those approaches and introduces various approximation methods.

  • PDF

Error Analysis of Free-Form Artifact using 3D Measurement Data (3차원 측정 데이터를 이용한 자유곡면 가공물의 오차해석)

  • 김성돈;이성근;양승한;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.439-442
    • /
    • 2001
  • The Accuracy of a free-form artifact is affected by machine tool errors, machining process errors, environmental causes and other uncertainty. This paper deals with methodological approach about machine tool errors that are defined the relationship between CMM and OMM inspections of the free-form artifact. In order to analyze the measurement data, Reverse engineering was used. In other words, Surface of Free-Form Artifact is generated by NURBS surface approximation method. Finally, Volumetric error map is made to compare surface of CMM data with that of OMM data.

  • PDF

An improved Rankine source panel method for three dimensional water wave problems

  • Feng, Aichun;You, Yunxiang;Cai, Huayang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • An improved three dimensional Rankine source method is developed to solve numerically water wave problems in time domain. The free surface and body surface are both represented by continuous panels rather than a discretization by isolated points. The integral of Rankine source 1/r on free surface panel is calculated analytically instead of numerical approximation. Due to the exact algorithm of Rankine source integral applied on the free surface and body surface, a space increment free surface source distribution method is developed and much smaller amount of source panels are required to cover the fluid domain surface than other numerical approximation methods. The proposed method shows a higher accuracy and efficiency compared to other numerical methods for various water wave problems.

Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme (GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어)

  • Kim, Young-Ouk;Park, Seong-Yong;Leeghim, Henzeh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.