• Title/Summary/Keyword: approximate quasigroup

Search Result 2, Processing Time 0.014 seconds

COMPATIBILITY IN CERTAIN QUASIGROUP HOMOGENEOUS SPACE

  • Im, Bokhee;Ryu, Ji-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.667-674
    • /
    • 2013
  • Considering a special double-cover Q of the symmetric group of degree 3, we show that a proper non-regular approximate symmetry occurs from its quasigroup homogeneous space. The weak compatibility of any two elements of Q is completely characterized in any such quasigroup homogeneous space of degree 4.

HOMOGENEOUS CONDITIONS FOR STOCHASTIC TENSORS

  • Im, Bokhee;Smith, Jonathan D.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.371-384
    • /
    • 2022
  • Fix an integer n ≥ 1. Then the simplex Πn, Birkhoff polytope Ωn, and Latin square polytope Λn each yield projective geometries obtained by identifying antipodal points on a sphere bounding a ball centered at the barycenter of the polytope. We investigate conditions for homogeneous coordinates of points in the projective geometries to locate exact vertices of the respective polytopes, namely crisp distributions, permutation matrices, and quasigroups or Latin squares respectively. In the latter case, the homogeneous conditions form a crucial part of a recent projective-geometrical approach to the study of orthogonality of Latin squares. Coordinates based on the barycenter of Ωn are also suited to the analysis of generalized doubly stochastic matrices, observing that orthogonal matrices of this type form a subgroup of the orthogonal group.