• Title/Summary/Keyword: approximate evaluation

Search Result 245, Processing Time 0.106 seconds

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

Research on the weld quality estimation system using fuzzy expert system (퍼지 전문가 시스템을 활용한 용접 품질 예측 시스템에 관한 연구)

  • 박주용;강병윤;박현철
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1997
  • Weld bead shape is an important measure for evaluation of weld quality. Many welding parameters have influence on the weld bead shape. The quantitative relationship between welding parameters and bead shape, however, is not determined yet because of their high complexity and many unknown factors. Fuzzy expert system is an advanced expert system which uses fuzzy rules and approximate reasoning. It is a vert useful tool for welding technology because is can process rationally the uncertain and inexact information such as the welding information. In this paper, the empirical and the qualitative relationship between welding parameters and bead shape are analyzed and represented by fuzzy rules. They are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. Weld bead shape is estimated from the welding parameters using fuzzy expert system. The result of comparison between measured values of weld bead by welding experiments and the estimates values by fuzzy expert system shows a good consistancy.

  • PDF

A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field. (다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구)

  • Gwon Chang-O;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

Evaluation of Stress Intensity Factor for A Partially Patched Crack Using an Approximate Weight Function

  • Kim, Jong-Ho;Hong, Seong-Gu;Lee, Soon-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1659-1664
    • /
    • 2003
  • A cracked plate with a patch bonded on one side was treated with a crack-bridging model using weight function: assuming continuous distribution of springs acting between th crack surfaces, the stress intensity factor of the patched crack was numerically obtained. Especially in the case of a patched crack subjected to residual non-uniform stress, the stress intensity factor was easily with the corresponding approximate weight function. This paper presented the stress intensity factors for a crack partially patched within a finite plate or a patched crack initiated from a notch.

Comparison of Rigorous Design Procedure with Approximate Design Procedure for Variable Sampling Plans Indexed by Quality Loss

  • Ishii, Yoma;Arizono, Ikuo;Tomohiro, Ryosuke;Takemoto, Yasuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2016
  • Traditional acceptance sampling plans have focused on the proportion of nonconforming items as an attribute criterion for quality. In today's modern quality management under high quality production environments, the reduction of the deviation from a target value in a quality characteristic has become the most important purpose. In consequence, various inspection plans for the purpose of reducing the deviation from the target value in the quality characteristic have been investigated. In this case, a concept of the quality loss evaluated by the deviation from the target value has been accepted as the variable evaluation criterion of quality. Further, some quality measures based on the quality loss have been devised; e.g. the process loss and the process capability index. Then, as one of inspection plans based on the quality loss, the rigorous design procedure for the variable sampling plan having desired operating characteristics (VS-OC plan) indexed by the quality loss has been proposed by Yen and Chang in 2009. By the way, since the estimator of the quality loss obeys the non-central chi-square distribution, the rigorous design procedure for the VS-OC plan indexed by the quality loss is complicated. In particular, the rigorous design procedure for the VS-OC plan requires a large number of the repetitive and complicated numerical calculation about the non-central chi-square distribution. On the other hand, an approximate design procedure for the VS-OC plan has been proposed before the proposal of the above rigorous design procedure. The approximate design procedure for the VS-OC plan has been constructed by combining Patnaik approximation relating the non-central chi-square distribution to the central chi-square distribution and Wilson-Hilferty approximation relating the central chi-square distribution to the standard normal distribution. Then, the approximate design procedure has been devised as a convenient procedure without complicated and repetitive numerical calculations. In this study, through some comparisons between the rigorous and approximate design procedures, the applicability of the approximate design procedure has been confirmed.

TOLERANT FUZZY PATTERN MATCHING : AN INTRODUCTION

  • DUBOIS, DIDIER;PRADE, HENRI
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.3-17
    • /
    • 1993
  • The fuzzy pattern matching technique has been developed in the framework of fuzzy set and possibility theory in order to take into account the imprecision and the uncertainty pervading values which have to be compared to requirements (which may be fuzzy) in a pattern matching process. This paper restates the basic principles and extends them to situations where (sub)patterns are only required to be satisfied up to a given tolerance (which may be fuzzy), or where the different subparts of a compound pattern may have various levels of importance. Both cases correspond to a weakening of elementary patterns. which can be expressed by a fuzzy relations modelling an approximate equality or an uncertain strict equality respectively. We also study the more sophisticated case where some elementary patterns have not to be satisfied with the highest priority provided that weaker requirements remain satisfied. The fuzzy pattern matching technique applies in a variety of problems including the evaluation of soft queries with respect to a fuzzy database, the evaluation of the fuzzy condition parts of rules in approximate reasoning, or the evaluation of the belonging of an ill-known object to a flexible class in classification problems.

  • PDF

Seismic Performance Level Criteria and Evaluation Methods (기존시설물 내진성능평가를 위한 평가항목 분류체계와 평가방법)

  • 김남희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.251-260
    • /
    • 2000
  • Seismic performance evaluation systems require rational classification of structure systems, proper evaluation criteria, and their scoring index for synthesis. Current seismic performance systems need expert judgments based on collection of available data, approximate analysis of important items, and various scoring system. This study presents a three-step seismic performance evaluation system for building structures in Korea. Each evaluation step determines the seismic performance and the method depends on the degree of refinement of analysis. The preliminary step evaluation involves the global attributes of structures such as vertical irregularity, asymmetric plan, redundancy, and age of structures. The second step requires an elastic analysis for estimation of forces acting on critical sections and checks the strength and ductility. The final step requires inelastic capacity of structures. Each stephas own evaluation scheme with proper weighing factor dependent on the importance and consequence. This study applies the fuzzy theory to a scoring method that synthesizes the individual quantity to a representative value.

  • PDF

A Study on the Evaluation of the Flexibility of Joint Area including Circular Section (원형단면을 포함하는 결합부의 강성평가 방법 연구)

  • 국종영;박상준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.110-119
    • /
    • 2000
  • In this study, we considered the method evaluation the flexibility of joint area including member with circular section. We regarded the flexibility of joint area as translational and rotational springs for the purpose of expressing local deformation. We verified this method by the use of normal mode analysis. We also calculated this joint area occurring in penetration so as to apply this method to other cases. Compare with the shell element model. we can the considerably approximate values.

  • PDF

Application of PMF on Reinforcement Design of Agricultural Reservoirs against Disaster (저수지 재해대비 보강설계를 위한 PMF의 적용)

  • Jang, Jung-Seok;Chung, Jin-Ho;Bae, Sang-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.324-329
    • /
    • 2005
  • This study considers that hydrologic stability evaluation of agricultural reservoirs designed by past standards and approximate increase methods of flood control when PMF(Probable maximum flood) flows in.

  • PDF