• Title/Summary/Keyword: applied element method

Search Result 3,692, Processing Time 0.033 seconds

Analysis of Metadata Standards of Record Management for Metadata Interoperability From the viewpoint of the Task model and 5W1H (메타데이터 상호운용성을 위한 기록관리 메타데이터 표준 분석 5W1H와 태스크 모델의 관점에서)

  • Baek, Jae-Eun;Sugimoto, Shigeo
    • The Korean Journal of Archival Studies
    • /
    • no.32
    • /
    • pp.127-176
    • /
    • 2012
  • Metadata is well recognized as one of the foundational factors in archiving and long-term preservation of digital resources. There are several metadata standards for records management, archives and preservation, e.g. ISAD(G), EAD, AGRkMs, PREMIS, and OAIS. Consideration is important in selecting appropriate metadata standards in order to design metadata schema that meet the requirements of a particular archival system. Interoperability of metadata with other systems should be considered in schema design. In our previous research, we have presented a feature analysis of metadata standards by identifying the primary resource lifecycle stages where each standard is applied. We have clarified that any single metadata standard cannot cover the whole records lifecycle for archiving and preservation. Through this feature analysis, we analyzed the features of metadata in the whole records lifecycle, and we clarified the relationships between the metadata standards and the stages of the lifecycle. In the previous study, more detailed analysis was left for future study. This paper proposes to analyze the metadata schemas from the viewpoint of tasks performed in the lifecycle. Metadata schemas are primarily defined to describe properties of a resource in accordance with the purposes of description, e.g. finding aids, records management, preservation and so forth. In other words, the metadata standards are resource- and purpose-centric, and the resource lifecycle is not explicitly reflected in the standards. There are no systematic methods for mapping between different metadata standards in accordance with the lifecycle. This paper proposes a method for mapping between metadata standards based on the tasks contained in the resource lifecycle. We first propose a Task Model to clarify tasks applied to resources in each stage of the lifecycle. This model is created as a task-centric model to identify features of metadata standards and to create mappings among elements of those standards. It is important to categorize the elements in order to limit the semantic scope of mapping among elements and decrease the number of combinations of elements for mapping. This paper proposes to use 5W1H (Who, What, Why, When, Where, How) model to categorize the elements. 5W1H categories are generally used for describing events, e.g. news articles. As performing a task on a resource causes an event and metadata elements are used in the event, we consider that the 5W1H categories are adequate to categorize the elements. By using these categories, we determine the features of every element of metadata standards which are AGLS, AGRkMS, PREMIS, EAD, OAIS and an attribute set extracted from DPC decision flow. Then, we perform the element mapping between the standards, and find the relationships between the standards. In this study, we defined a set of terms for each of 5W1H categories, which typically appear in the definition of an element, and used those terms to categorize the elements. For example, if the definition of an element includes the terms such as person and organization that mean a subject which contribute to create, modify a resource the element is categorized into the Who category. A single element can be categorized into one or more 5W1H categories. Thus, we categorized every element of the metadata standards using the 5W1H model, and then, we carried out mapping among the elements in each category. We conclude that the Task Model provides a new viewpoint for metadata schemas and is useful to help us understand the features of metadata standards for records management and archives. The 5W1H model, which is defined based on the Task Model, provides us a core set of categories to semantically classify metadata elements from the viewpoint of an event caused by a task.

A Study for Failure Test and Progressive Failure Analysis on Composite Laminates Mechanical Joint (복합재료 적층판 기계적 체결부 파손시험 및 점진적 파손해석에 대한 연구)

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Yang, Yong-Man;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • In this paper, the total procedure for composite laminate mechanical joint (ASTM D5961 Proc. A, B) from fixture design to test analysis was showed. Composite laminate mechanical joints were analyzed using the FEM(Finite Element Method) and compared to test results. A progressive failure analysis was applied to FEM to analyze the failure behavior of test specimens. Three failure theories - maximum stress, maximum strain, and Tsai-Wu were applied to FEM to predict test failure load. General parameters for composite laminate joints were reviewed and the differences of bearing strength were compared with major parameters.

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Study on the Chemical Characteristics of $PM_{10}$ at Background Area in Korean Peninsula (한반도 서해안 배경지역 미세입자의 화학적 특성 연구)

  • Bang So-Young;Baek Kwang-Wook;Chung Jin-Do;Nam Jae-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.455-468
    • /
    • 2004
  • The purpose of this paper is to understand the time series and origin of a chemical component and to compare the difference during yellow sand episodes for analysis $PM_{10}$ chemical components in the region of west in Korean Peninsula, 1999-2001. An annual mean concentration of $PM_{10}$ is $29.1\;{\mu}g/m^3$. A monthly mean and standard deviation of $PM_{10}$ concentration are very high in spring but there is no remarkably seasonal variation. Also, water soluble ionic component of $PM_{10}$ be influenced by double more total anion than total cation, be included $NO_{3}^-\;and\;SO_{4}^{2-}$ for the source of acidity and $NH_{4}^+$ to neutralize. Tracer metals of $PM_{10}$ slowly increases caused by emitted for soil and ocean (Fe, Al, Ca, Mg, Na) and Zn, Pb, Cu, Mn for anthropogenic source. According to method of enrichment factor (E.F) and statistics, assuming that the origin of metal component in $PM_{10}$ most of element in the Earth's crust e.g. Mg, Ca, Fe originates soil and Cu, Zn, Cd, Pb derives from anthropogenic sources. The ionic component for $Na^{+}\;Cl^-,\;Mg^{2+}\;and\;Ca^{2+}$ and Mg, Al, Ca, Fe originated by soil component largely increase during yellow sand period and then tracer metal component as Pb, Cd, Zn decrease. According to factor analysis, the first group is ionic component ($Na^+,\;Mg^{2+},\;Ca^{2+}$) and metal component (Na, Fe, Mn and Ni) be influenced by soil. The second group, Mg, Cr also be influenced by soil particle.

Numerical Simulation of Tunnel Blasting (수치모형에 의한 터널발파 시뮬레이션에 관한 연구)

  • 박정주;박의섭
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.344-351
    • /
    • 2001
  • In the tunnelling by blasting, the calculations of charge weight and the estimations of blasting effect have been simply carried out by empirical formulas. Also, it has been rare to consider the impact energy of blasting in numerical analyses. Thus in this study a numerical modeling technique of blasting load is developed and used with the 2 dimensional distinct element method(DEM) to consider the nonlinear behaviour of discontinuous underground structures. TD examine and verify its applicability of the numerical model to actual problems, a blasting of tunnel under an embankment is numerically analysed with DEM. It is examined that the behavior of circumference structures, the displacements of above- and under-ground structures, and the propagation of particle velocities can be known by this numerical analysis. As a result, the blasting load model, proposed by this study, can be applied to actual problems. This model applied with DEM can be used in the examination of structural stability.

  • PDF

Development of 6-axis force/moment sensor for an intelligent robot's foot (지능형 로봇 발을 위한 6 축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun;Hu, Duk-Chan;Yoon, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1102
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for an intelligent robot's foot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to a humanoid robot's foot(ankle). They in the published paper already have some disadvantage in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to be gotten similar the rated output under each rated load. So, the sensing elements of the 6-axis force/moment sensor should get lots of design variables. Also, the size of 6- axis force/moment sensor is very important for mounting to robot's foot. In this paper, a 6-axis force/moment sensor for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using FEM (Finite Element Method) analysis. Then, the 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

  • PDF

The Study of SPA Brand Spacial Expression Applied to Experience Marketing - Focused on Flagship Stores in Myungdong - (체험마케팅을 적용한 SPA브랜드 공간 표현 특성에 관한 연구 - 명동 플래그쉽 스토어를 중심으로 -)

  • Woo, Ye-Seul;Kim, Kai-Chun
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In the trend of concentrating on the consumer driven experience market as a new marketing concept according to the improvement of life standard and the change of consummation pattern, SPA brand has applied experience marketing strategies to the market successfully to be grown constantly with consumer secure and production of business benefit through brand image and positive consumer attraction. Therefore, this study aims to research the experiential representation element and attribute in the competitive Global SPA brand space due to the sustainable growth from the recent domestic fashion market based on the strategy type of the experiential marketing. Thus, the experiential marketing strategy type was drawn based on the experiential marketing and the theoretical reflections of Global SPA brand, and the SPA brand space was classified depending on the attribute of the commercial space for making the framework of case analysis, so it was progressed as the method of analysis through the experiential representation attribute in the SPA brand space. The marketing strategy and representation for advertising the image of company and product message by the SPA brand should be planned, so successful application of the experiential marketing to the shop is connected to the corporate interests, and forming the meaning more than space by impressing on the consumers the brand and arousing the emotional experience of the consumers and meeting the consumers' a variety of needs had effects on forming a lasting relationship between the brand and consumers. Therefore, this study is expected to be an opportunity to vitalize the domestic SPA brand behind the competition with the Global SPA brand.

  • PDF

Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake

  • Zandi, Yousef;Shariati, Mahdi;Marto, Aminaton;Wei, Xing;Karaca, Zeki;Dao, Duy Kien;Toghroli, Ali;Hashemi, Mir Heydar;Sedghi, Yadollah;Wakil, Karzan;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.439-447
    • /
    • 2018
  • The structural behaviors of cylindrical barns as a specific engineering structure have been considered as a complicated computing process. The structure design against the earthquake load, to protect by using the code, is an urgency avoiding unexpected damages. The situation has been subjected to the applied design method if there would be no failure across the construction procedures. The purpose of the current study is to clarify the behaviors of cylindrical reinforced concrete barns through the analytic methods across the mass and Lagrangian approaches through the whole outcomes comparison indicating that the isoparametric element obtained from the Lagrangian approach has been successfully applied in the barns earthquake analysis when the slosh effects have been discarded. The form of stress distributions is equal with $s_z$ closed distributions to one another.