• Title/Summary/Keyword: application in geotechnical engineering

Search Result 432, Processing Time 0.022 seconds

Study on the Alternating Flow Hydraulics and Its New Potential Application in the Geotechnical Testing Field

  • Sang, Yong;Han, Ying;Duan, Fuhai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • The alternating flow hydraulics (AFH) had demonstrated the unique features in the past. One of the most well-known inventions was the hydraulic machine-gun synchronizer, which had become the standard equipment of airplane during World War I. The studies on the AFH between 1960 and 1980 had trigged many researchers' interests and reached the summit. The disadvantages of the AFH like low efficiency and cooling difficulty had prevented the further development. Few people are engaged in studying the AFH at present. However, the unique characteristics of the AFH inspire the researchers to continuously explore the new special suitable applications. The overviews of the AFH and the new potential application in the geotechnical testing field have been discussed in this paper. First, the research results of the AFH in the past have been summarized. Then, the classifications of the AFH have been introduced in detail according to the working principle, the number of hydraulic transmission pipelines and the mode of input energy. The advantages and the disadvantages of the AFH have been discussed. A novel potential suitable application in the soil test field has been presented at last. The detailed designing ideas of a new dynamic trixial instrument have been given, which will be a more innovational and energy-saving plan according to the current studies. A series of simulation experiments have been done. The simulation results show that the proposed scheme for the new dynamic trixial instrument is feasible. The paper work will also give some inspirations in the reciprocating motion control system.

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

A Study on the Application of Simple Reliability Analysis for Soil Improvement (연약지반개량에 대한 신뢰성해석 간편법의 적용성 연구)

  • Jang, Yeon-Soo;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.759-767
    • /
    • 2009
  • Recently, there is a trend to introduce a reliability approach to the design of al large scale improvement of weak ground due to the uncertainty of the influence factors in the consolidation. Since the reliability analysis is not easily adopted to geotechnical engineers because of some difficulties in working up the theories, Duncan(2000) proposed a simplified method for using reliability method to goetechnical problems. In this study, the applicability of Duncan's simplified reliability approach is evaluated by comparing the traditional reliability results with Duncan's. In the sensitivity analysis, the two results were quite similar. However, the probability of failure showed an error range of 20~50% and further Duncan's approach could not make a distinction for the distribution of geotechnical random variables. The simplified reliability method seems to be used properly in preliminary design if it is used supplementary with the deterministic method.

  • PDF

A Study on the Developement of Korean Driving Cone Penetrometer Test(DCPT) Method (한국형타격콘관입시험법의 개발에 관한 연구)

  • Jung, Sung-Min;Kwon, Oh-Sung;Lee, Jong-Sung;Lee, Min-Hee;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.17-30
    • /
    • 2011
  • A variety of in-situ geotechnical investigation methods are currently used to measure the properties of each site, but in-situ tests for "Intermediate Geomaterial (IGM)", which is the transitional geomaterial between soil and rock, have only limited application. In the United States, "The Texas Cone Penetrometer Test (TCPT)", which is the geotechnical investigation technology for IGM, is utilized to create foundation designs. This paper introduces "The Driving Cone Penetrometer Test (DCPT)", which can be performed using general geotechnical investigation equipment and also analyzes the correlation between various in-situ geotechnical investigation methods by applying DCPT on the ground. The results showed that the correlation between the driving cone penetrometer test (DCPT) and standard penetration test (SPT) was quite high. Additionally, the scope of DCPT properties was wide, depending on soil types.

Application of Neural Network to Determine the Source Location in Acoustic Emission

  • Lee, Sang-Eun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.475-482
    • /
    • 2005
  • The iterative calculation by least square method was used to determine the source location of acoustic emission in rock, as so called "traditional method". The results were compared with source coordinates infered from the application of neural network system for new input data, as so called "new method". Input data of the neural network were based on the time differences of longitudinal waves arrived from acoustic emission events at each transducer, the variation of longitudinal velocities at each stress level, and the coordinates of transducer as in the traditional method. The momentum back propagation neural network system adopted to determine source location, which consists of three layers, and has twenty-seven input processing elements. Applicability of the new method were identified, since the results of source location by the application of two methods were similarly concordant.

Application of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 적용)

  • Jeong, Gyeong-Hwan;Jeong, Dong-Yeong;Park, Hun-Kook;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.775-782
    • /
    • 2004
  • Recently, the cases which are constructed close by neighboring structure or underground structure are on the increase to get the utmost out of the land exploitation of underground space in the downtown area. As the building becomes larger, the excavation depth is getting deep, and the excavation area is getting, wide too. These are frequent occasions that the application of Strut or Anchor method is difficult, because of site boundary, civil application and the ground condition. Therefore, to solve these problem, we analyze and compare design with measuring data, change the design factor and show the improvement of course through the application of self-supported diaphragm wall using counterfort technique which is a new method. It is expected to be a contribution to the suitable exploitation method of construction.

  • PDF

Probability distribution and statistical moments of the maximum wind velocity

  • Schettini, Evelia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.287-302
    • /
    • 1998
  • This paper formulates a probabilistic model which is able to represent the maximum instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within the mean maximum component, this model relies also on the randomness of the maximum value of the turbulent fluctuation. The application of the FOSM method furnishes the first and second statistical moments in closed form. The comparison between the results herein obtained and those supplied by classical methods points out the central role of the turbulence intensity. Its importance is exalted when extending the analysis from the wind velocity to the wind pressure.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Application of Rammed Aggregate Pier(Geopier) for Foundation Reinforcement of Structures (구조물 기초보강용 짧은 쇄석다짐말뚝(Geopier)의 적용성 및 활용방안에 관한 연구)

  • Joeng, Gyong-Hwan;Jung, Sun-Tae;Moon, Jun-Bai;Kim, Dong-Jun;Baek, Kyung-Jong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.479-488
    • /
    • 2005
  • Geopier soil reinforcement system which crushed aggregate is put into a hole and rammed the aggregate with tamper is a viable alternative to deep foundation to over-excavation and replacement. Also, Geopier is intermediate foundation of deep and shallow foundation. In this paper, the value of Geopier element stiffness modulus($K_g$) when designed is compared with the measured value($K_g$) by the in-situ modulus Load test in the field. Also, this paper presents a technology overview of system capabilities and application for foundation reinforcement of structures.

  • PDF