• Title/Summary/Keyword: application hardening

Search Result 222, Processing Time 0.02 seconds

Enhancement of Stem Firmness in Standard Chrysanthemum 'Baekma' by Foliar Spray of Liquid Calcium Compounds (액상 칼슘 화합물 엽면살포에 의한 스탠다드 국화 '백마'의 줄기 경도 강화)

  • Lee, Chang-Hee;Nam, Mi-Kyong
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.298-305
    • /
    • 2011
  • This study was conducted to enhance the stem firmness of standard chrysanthemum 'Baekma' bred in Korea for commercial quality improvement and inhibition of stem breaking during transportation through foliar spray with calcium agents. Calcium agent screening 'Baekma' was examined using $CaCl_2{\cdot}2H_2O$, $Ca(NO_3)_2{\cdot}4H_2O$, and OS-Ca (natural liquid calcium compounds extracted from oyster shell) depending on each concentration (0, 0.001, 0.01, 0.1, and 1.0%, respectively). All calcium agents sprayed with 1.0% caused chemical injury such as stem bending or leaf burn. OS-Ca also showed more sensitive response to chemical injury than the other calcium agents because OS-Ca was absorbed very well by 'Baekma' leaves. Maximum stem firmness measured during the final harvest was greater in OS-Ca than in the other calcium agents. Especially, maximum stem firmness was greatest in 0.01% OS-Ca. However, elastic strength and maximum bending stress were greater in 0.001% OS-Ca than in the others. Thus, OS-Ca ranged from 0.005 to 0.05%, which did not show any chemical injury, was finally selected as the first candidate for hardening the stem of 'Baekma'. The next experiment using OS-Ca was conducted with the concentrations of 0, 0.005, 0.01, and 0.05%, respectively. From the results, 0.05% OS-Ca showed better plant growth and parameters such as plant height, stem diameter (upper and middle part), the number of leaves, and dry weights of each part than the other concentrations of OS-Ca and control. As for stem firmness depending on OS-Ca concentration, the Ca content within stem, maximum firmness, elastic strength, and maximum bending stress of stem in 'Baekma' sprayed with 0.05% OS-Ca showed the highest values among all the treatments and it turned out to be very high level of significance between control and OS-Ca treatments. However, the area and percentage of the inside cavity within horizontal stem section in 'Baekma' did not show any significance between any treatments including control. Thus, stem firmness of 'Baekma' did not show any correlation with the inside cavity area of stem. In conclusion, we recommend foliar sprays with 0.05% OS-Ca at vegetative growth stage to enhance stem firmness of 'Baekma' during transportation.

Optimization of Protocol for Injection of Iodinated Contrast Medium in Pediatric Thoracic CT Examination (소아 흉부 CT검사에서 조영제 주입에 관한 프로토콜의 최적화)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.879-887
    • /
    • 2019
  • The purpose of this study is to establish a physiological injection protocol according to body weight, in order to minimize amount of contrast medium and optimize contrast enhancement in pediatric patients performing thoracic CT examinations. The 80 pediatric patients under the age of 10 were studied. Intravenous contrast material containing 300 mgI/ml was used. The group A injected with a capacity of 1.5 times its weight, and groups B, C and D added 5 to 15 ml of normal saline with a 10% decrease in each. The physiologic model which can be calculated by weight about amount of injection of contrast medium and normal saline, flow rate and delay time were applied. To assess image quality, measured average HU value and SNR of superior vena cava, pulmonary artery, ascending and descending aorta, right and left atrium, right and left ventricle. CT numbers of subclavian vein and superior vena cava were compared to identify the effects of reducing artifacts due to normal saline. Comparing SNR according to the contrast medium injection protocol, significant differences were found in superior vena cava and pulmonary artery, descending aorta, right and left ventricle, and CT numbers showed significant differences in all organs. In particular, B group with a 10% decrease in contrast medium and an additional injection of saline showed a low degree of contrast enhancement in groups with a decrease of more than 20%. In addition, the group injected with normal saline greatly reduced contrast enhancement of subclavian vein and superior vena cava, and the beam hardening artifact by contrast medium was significantly attenuated. In conclusion, the application of physiological protocol for injection of contrast medium in pediatric thoracic CT examinations was able to reduce artifacts by contrast medium, prevent unnecessary use of contrast medium and improve the effect of contrast enhancement.