• Title/Summary/Keyword: application generators

Search Result 179, Processing Time 0.031 seconds

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Development of Power Management System for Efficient Energy Usage of Small Generator (소형 발전기의 에너지 절약을 위한 전력관리 시스템 개발)

  • Jeon, Min-Ho;Oh, Chang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2601-2606
    • /
    • 2012
  • In this paper, an electricity management system, which saves energy by utilizing electricity consumption of load from an environment that uses at least two compact generators, is proposed and developed. A hardware is constructed by using TMS320C6713 DSP chip made by TI that is capable of high speed hardware floating point processing while serial communication is used for communication with a monitoring PC. Manual control is made possible from the monitoring PC and automatic on/off is enabled in the generator by using data collected by CT/PT sensor from the DSP mainboard. Test results confirm that the electricity management system proposed in this study functions without abnormality. The application of an algorithm that saves energy by using electricity consumption of load also allows for a longer supply of electricity compared to continuously using two compact generators.

Noise Reducation of Concrete Pavement through Application of Random Transverse Tining (콘크리트 포장의 소음 저감을 위한 임의 간격 타이닝 설계 및 적용)

  • Park, Jin-Whoy;Choi, Tae-Hui;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.125-140
    • /
    • 2005
  • This study suggests a suitable random transverse tining for reduction tire/road noise from concrete pavement. Through literature reviews, random transverse tining that can disperse the energy concentrated to the specific frequency was suggested using the LCG(linear congruential generators) algorithm. The spacing of tining from this study is applied to Daegu-Pohang express highway. For the purpose oi comparison, two other random tining sections were included that are research products from Chung-Ang university and Wisconsin DOT. In result of pass-by noise measurement by car, though designed section is superior to the others as noise reduction by reducing pitch noise, the effectiveness is not large. In case of traffic noise measurement, lower noise was observed at random transverse tining sections than uniformly transverse tining section, too. But there are seine differences between pass-by noise and traffic noise.

  • PDF

Application of HHT for Online Detection of Inter-Area Short Circuits of Rotor Windings of Turbo-Generators Based on the Thermodynamics Modeling Method

  • Wang, Liguo;Wang, Yi;Xu, Dianguo;Fang, Bo;Liu, Qinghe;Zou, Jing
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.759-766
    • /
    • 2011
  • This paper focuses on monitoring and predicting the short circuit faults of the rotor windings of large turbo-generator systems. For the purpose of increasing efficiency and decreasing maintenance cost, a method that combines the HHT (Hilbert Huang Transform) with a wavelet has been studied. This method is based on analyzing a classical Albright detecting coil. Due to the Empirical Mode Decomposition (EMD) and the Intrinsic Mode Functions (IMF) of the HHT the exact location of a short circuit of rotor windings may be given. However, a part of the useful information is eliminated by the unreasonable decomposing scale of the wavelet. Based on the thermodynamics modeling method, this study was illustrated with a 50MW turbo-generator system that is installed in Northern China. The analysis results, which have very good agreement with those of a previous study, show that the method of combining the HHT with a wavelet is an effective way to analyze and predict the short circuit faults of the rotor windings of large generators, such as supercritical turbo-generator systems and wind turbo-generator systems. This work can offer a useful reference for analyzing smart grids by improving the power quality of a distribution network that is supplied by a turbo-generator system.

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

Effect of Solid $CO_2$ Generator Treatment on Fruit Yield and Quality of Korean Melon(Cucumis melo var. hybrida) (탄산가스 발생제 처리가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Kim, Min Ki;Cheung, Joung Do;Do, Han Woo;Park, Jong Uk;Kim, Jwoo Hwan;Park, Jong Tae;Lee, Soo Tak;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 2014
  • The objective of this study was to examine the changes in carbon dioxide ($CO_2$) concentration due to application of solid $CO_2$ generator (Tansansol) in plastic greenhouses during winter cultivation of Korean melon. The experimental treatments consisted of four levels, namely, 0 (control) 10, 20 and 30bags with solid $CO_2$ generator per $600m^2$ of plastic greenhouse. $CO_2$ concentration in plots with solid gas generators was higher by 3.0-3.2% compared to control. Fruit weight, sugar content and color parameter were also enhanced due to application of solid $CO_2$ generator. The fraction of fermentated and unmarketable fruits were decreased by 2.9-3.9% and 5.4-7.3%, respectively, in plots where solid $CO_2$ generators were applied. The marketable yield increased by 10.3, 14.8 and 16.2% in plots with 10, 20 and 30bags with $CO_2$ generators, respectively. As a result, $CO_2$ concentration within the greenhouses was increased by applying $CO_2$ generators and it is positively affected the rate of photosynthesis.

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

Operation of Battery Energy Storage System for Governor Free and its Effect (주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과)

  • Cho, Sung-Min;Jang, Byung-Hoon;Yoon, Yong-Bum;Jeon, Woong-Jae;Kim, Chulwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems