• 제목/요약/키워드: apparent thermal conductivity

검색결과 29건 처리시간 0.02초

무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 특성 평가 (Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane)

  • 이종규;소정섭;노현경
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.604-608
    • /
    • 2012
  • Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the $CaCO_3$ addition. The apparent density and thermal conductivity were increased by increasing the $CaCO_3$ addition. With an increasing amount of $CaCO_3$ powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of $CaCO_3$, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over $45{\mu}m$ in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of $CaCO_3$ with average particle size of $27{\mu}m$ led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, $Mg(OH)_2$ showed the highest thermal conductivity; on the other hand, $CaCO_3$ showed the lowest thermal conductivity.

EPS Bead 혼입비율에 따른 CLC의 단열특성 (Insulation Properties of CLC according to Mixing Ratio of EPS Bead)

  • 이정택;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2023
  • CLC is used as a filling material for many buildings, and according to energy saving design standards, CLC also requires insulation performance. However, it shows lower insulation performance compared to organic insulation, so additional research is needed. Therefore, in this study, the insulation properties of CLC were analyzed by incorporating EPS beads with high insulation performance into CLC. In this experiment, EPS beads and blast furnace slag were replaced, and W/B was fixed at 33%. The EPS Bead mixing ratio was divided into 5 levels: 0, 0.5, 1.0, 1.5, 2.0 (%), and the experimental items were measured for apparent density and thermal conductivity. As a result of the experiment, the apparent density and thermal conductivity tended to decrease as the mixing ratio of EPS beads increased. It is judged that the density decreased due to the low density and the micropores inside, and the thermal conductivity also decreased.

  • PDF

Characteristics of Hydration and Correlation on Cement-Based Thermal Insulation Material

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.489-496
    • /
    • 2019
  • Cement-based thermal insulation material was manufactured using OPC, lime, anhydrite, and CSA cement in this study. The morphology and physical properties of the material were analyzed using XRD. All samples had ettringite, Ca(OH)2, and CaCO3 crystals. The XRD peak intensity of the ettringite and Ca(OH)2 slightly increased with an increase in curing time from 3 to 7 days. The compressive strength values at 28 days of specimens 1-8 were in the range of 0.25-0.32 MPa, and the compressive strength values of specimens 3-8 were > 0.3 MPa. The coefficients of correlation between compressive strength and apparent gravity at 7 days and those between compressive strength and ettringite/Ca(OH)2 XRD peak intensity at 28 days were above 0.8. That is, the compressive strength exhibited an influence on apparent gravity at 7 days and on hydrate at 28 days. The thermal conductivity of all specimens was 0.041-0.045 W/mK, and the highest value of thermal conductivity was shown by specimen 5. The coefficient of correlation between apparent gravity and thermal conductivity was 0.84. It was concluded that control of raw materials and hydrates must be considered for manufacturing of insulation materials. The cement-based thermal insulation material in this study could be used in construction fields.

Thermal Conductivity Measurement of Insulation Material for Superconducting Application

  • Chol, Y.S.;Kim, D.L.;Shin, D.W.;Hwang, S.D.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.29-32
    • /
    • 2011
  • The thermal properties of insulation material are essential to develop a high-temperature superconducting (HTS) power cable to be operated at around liquid nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore special attention needs to be paid to estimate heat flow correctly. Thus, we have developed a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range from 40 K to near room temperature using a cryocooler. Firstly, the measurement of thermal conductivity for Teflon is carried out for accuracy confirmation. For a supplied heat flux, the temperature difference between warm and cold side is measured in steady state, from which the thermal conductivity of Teflon is calculated and compared with published result of NIST. In addition, the apparent thermal conductivity of Polypropylene laminated paper (PPLP) is presented and its temperature dependency is discussed.

무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 발포조건에 따른 특성 평가 (Evaluation of an Organic-Inorganic Hybrid Insulation Material using an Inorganic Filler and Polyurethane with a Foaming Condition)

  • 노현경;송훈;추용식;박지선;이종규
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.654-658
    • /
    • 2012
  • In this work, the properties of an organic-inorganic hybrid insulating material using an inorganic filler and polyurethane foam with different foaming conditions were investigated. At weight ratios of polyol and isocyanate of 1 to 1.2 good foaming properties were noted. In addition, an addition of 0.4 g of water, 0.1 g of surfactant, and 0.1 g of catalyst with respect to the composites of polyol at 5 g and isocyanate at 6 g showed the lowest apparent density and thermal conductivity. The pore size was smaller in the organic-inorganic hybrid foaming body with an increase in the $CaCO_3$ addition amount. Moreover, the apparent density and thermal conductivity were increased when the added amount of $CaCO_3$ increased. Increasing the amount of $CaCO_3$ powder is expected to improve the flame retardant capabilities; however, doing this tends to increase the apparent density and thermal conductivity.

접촉열전도재를 도포한 접촉열저항 특성연구 (Characterization of Thermal Contact Resistance Doped with Thermal Interface Material)

  • ;;;문병준;이선규
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

다양한 파우더 충전 단열 방법의 단열 성능에 대한 실험적 연구 (Experimental research about thermal insulation performance of various powder insulation methods)

  • 김희선;정상권;정성하
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.49-54
    • /
    • 2010
  • This paper presents apparent thermal conductivity of various powder at different vacuum levels for cryogenic insulation. Four kinds of powder insulator are examined by using boil-off calorimetry at pressure range from 50 Torr to 3 mTorr. The first material is perlite which is widely used in cryogenic application. Microsphere is the second one that is recently proposed as a replacement powder for liquid hydrogen storage tanks. It is a hollow sphere made of silica with the diameter in the order of 10 to $100{\mu}m$. Popped rice and polystyrene beads are also selected as candidates for powder insulation even though they are polymers. With their porous elliptic and spherical configuration and light density, they demonstrate fairly good thermal insulation performance at pressure range from 50 Torr to 3 mTorr. According to the experimental investigation in this paper, microsphere and polystyrene beads possess promising insulation characteristic as powder insulators and further study is desired.

냉장고 가스켓 주위 형상 및 물성치 변화에 의한 열손실 영향 연구 (The Effect of Gasket Shape and Material Properties on Heat Losses in a Refrigerator)

  • 하지수;정광수;김태권;심재성
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.413-418
    • /
    • 2010
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation for the effects of various effort to reduce heat losses through the gasket. The first trial is to extend the inner gasket to prevent the heat loss flowing from the inner of refrigerator. The effects of thermal conductivity changes of gasket and magnet are investigated by the numerical heat transfer analysis. The position change of hot line is also examined in the present research. From the present result of the numerical simulation of heat transfer, we are able to reduce the heat loss about 20~40% by using inner gasket extension. The reducing of thermal conductivity of gasket is considerable in the heat loss reduction. On the other hand, the thermal conductivity change of magnet has no apparent effect in heat loss reduction. The position change of hot line has considerable positive effect in the reduction of heat loss near gasket region.

열 복사 효과와 열 변형을 고려한 CRT전자빔 오착 해석 (Analysis of electron beam landing shift of CRT by thermal radiative effect and thermal deformation)

  • 강대진;김국원;송창섭
    • 전자공학회논문지C
    • /
    • 제34C권1호
    • /
    • pp.12-20
    • /
    • 1997
  • In this paper, we analyze the thermal deformation of mask frame assembly using finite element method(FEM) and predict the beam landing shift during tube operation. For realistic analysis, the apparent thermal conductivity and the apparent elastic modulus are calculated and the shadow mask is modeled as shell without aperatures. Also, all parts inside the tube are modeled and the each radiative effect is considered. Then the finite element analysis is performed for transient thermo-elastic deformation of the mask frame assembly and the beam landing shift is calculated. Experiments are eprformed for 17" cathode ray tube (CRT) to validate the FEM analysis. The temperatures of all parts inside the tube and beam landing shift on the panel are measured and the results are discussed in comparison with the results of the FEM analysis.ysis.

  • PDF

주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 인장 특성 및 열전도도 (Tensile Properties and Thermal Conductivities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures)

  • 전중환
    • 열처리공학회지
    • /
    • 제33권5호
    • /
    • pp.219-225
    • /
    • 2020
  • The objective of this study was to investigate the tensile properties and thermal conductivities of Mg9.3%Al alloy in as-cast state and heat-treated state consisting of fully discontinuous precipitates (DPs), respectively. The fully DPs microstructure was obtained by solution treatment at 405℃ for 24 h, followed by furnace cooling to RT. The as-cast alloy showed a partially divorced eutectic β(Mg17Al12) phase particles formed along the α-(Mg) cell boundaries. The DPs had various apparent (α+β) interlamellar spacings, which is related to different transformation temperatures during the furnace cooling. The DPs microstructure exhibited better tensile strength than the as-cast one, resulting from the higher value of elongation in response to its more homogeneous microstructure. It is noticeable that the DPs microstructure had 12.4% higher thermal conductivity in average than the as-cast one between RT and 200℃. The XRD analyses revealed that the lower Al concentration in the α-(Mg) matrix may well be responsible for the better thermal conductivity of the DPs microstructure.