• Title/Summary/Keyword: apparent dielectric constant

Search Result 32, Processing Time 0.016 seconds

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

Development of Time Domain Reflectometry Probe for Evaluation of Copper Concentration in Saline Environment (염수환경에서의 구리 농도 평가를 위한 Time Domain Reflectometry 프로브 개발)

  • Lee, Dongsoo;Lee, Jong-Sub;Hong, Won-Taek;Yu, Jung-Doung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.15-24
    • /
    • 2018
  • As electromagnetic waves are affected by electrical conductivity or permittivity, they are widely used to evaluate geotechnical characteristics. In this study, a probe for measuring electromagnetic waves using a time domain reflectometry is manufactured to evaluate heavy metal concentration in saline water. In the experiments, a copper is used as a heavy metal, and a probe is demonstrated with the concentration of copper. Solutions were set for 8 different copper concentration (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 mg/L) in saline water with 3% salinity. The probe is coated by electrical insulating materials such as epoxy, top-coat, varnish, acrylic paint, heat-shrinkage tube to measure electromagnetic waves in saline water. The measured signals are compared according to coating material. As results, for probes coated with acrylic paint and heat-shrinkage tube, signal variation is not detected. For epoxy, top-coat, and varnish coated probes, the voltage decreases with an increase of copper concentration. Probes coated by epoxy at once and top coat can estimate under 5 mg/L of copper concentration and the probe coated by epoxy twice can estimate over 5 mg/L of copper concentration. This study shows that the probe using the time domain reflectometry can be used to evaluate the concentration of heavy metal in saline water by coating the probe with insulating material.