• Title/Summary/Keyword: apoptotic specific protein of p53

Search Result 17, Processing Time 0.026 seconds

Tumor Suppressor Protein p53 Promotes 2-Methoxyestradiol-Induced Activation of Bak and Bax, Leading to Mitochondria-Dependent Apoptosis in Human Colon Cancer HCT116 Cells

  • Lee, Ji Young;Jee, Su Bean;Park, Won Young;Choi, Yu Jin;Kim, Bokyung;Kim, Yoon Hee;Jun, Do Youn;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1654-1663
    • /
    • 2014
  • To examine the effect of tumor suppressor protein p53 on the antitumor activity of 2-methoxyestradiol (2-MeO-$E_2$), 2-MeO-$E_2$-induced cell cycle changes and apoptotic events were compared between the human colon carcinoma cell lines HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$). When both cell types were exposed to 2-MeO-$E_2$, a reduction in the cell viability and an enhancement in the proportions of $G_2/M$ cells and apoptotic sub-$G_1$ cells commonly occurred dose-dependently. These 2-MeO-$E_2$-induced cellular changes, except for $G_2/M$ arrest, appeared to be more apparent in the presence of p53. Immunofluorescence microscopic analysis using anti-${\alpha}$-tubulin and anti-lamin B2 antibodies revealed that after 2-MeO-$E_2$ treatment, impaired mitotic spindle network and prometaphase arrest occurred similarly in both cell types. Following 2-MeO-$E_2$ treatment, only HCT116 ($p53^{+/+}$) cells exhibited an enhancement in the levels of p53, p-p53 (Ser-15), $p21^{WAF1/CIP1}$, and Bax; however, the Bak level remained relatively constant in both cell types, and the Bcl-2 level decreased only in HCT116 ($p53^{+/+}$) cells. Additionally, mitochondrial apoptotic events, including the activation of Bak and Bax, loss of ${\Delta}{\psi}m$, activation of caspase-9 and -3, and cleavage of lamin A/C, were more dominantly induced in the presence of p53. The Bak-specific and Bax-specific siRNA approaches confirmed the necessity of both Bak and Bax activations for the 2-MeO-$E_2$-induced apoptosis in HCT116 cells. These results show that among 2-MeO-$E_2$-induced apoptotic events, including prometaphase arrest, up-regulation of Bax level, down-regulation of Bcl-2 level, activation of both Bak and Bax, and mitochondria-dependent caspase activation, the modulation of Bax and Bcl-2 levels is the target of the pro-apoptotic action of p53.

Recent Candidate Molecular Markers: Vitamin D Signaling and Apoptosis Specific Regulator of p53 (ASPP) in Breast Cancer

  • Patel, Jayendra B.;Patel, Kinjal D.;Patel, Shruti R.;Shah, Franky D.;Shukla, Shilin N.;Patel, Prabhudas S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1727-1735
    • /
    • 2012
  • Regardless of advances in treatment modalities with the invention of newer therapies, breast cancer remains a major health problem with respect to its diagnosis, treatment and management. This female malignancy with its tremendous heterogeneous nature is linked to high incidence and mortality rates, especially in developing region of the world. It is the malignancy composed of distinct biological subtypes with diverse clinical, pathological, molecular and genetic features as well as different therapeutic responsiveness and outcomes. This inconsistency can be partially overcome by finding novel molecular markers with biological significance. In recent years, newer technologies help us to indentify distinct biomarkers and increase our understanding of the molecular basis of breast cancer. However, certain issues need to be resolved that limit the application of gene expression profiling to current clinical practice. Despite the complex nature of gene expression patterns of cDNAs in microarrays, there are some innovative regulatory molecules and functional pathways that allow us to predict breast cancer behavior in the clinic and provide new targets for breast cancer treatment. This review describes the landscape of different molecular markers with particular spotlight on vitamin D signaling pathway and apoptotic specific protein of p53 (ASPP) family members in breast cancer.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner

  • Kim, Da-Hyun;Lee, Hyun-Woo;Park, Hyun-Woo;Lee, Han-Woong;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.419-424
    • /
    • 2020
  • Bee venom (BV), secreted from the venom gland of the honey bee, contains several biological active compounds. BV has been widely used as a traditional medicine for treating human disease, including cancer. In this study, we have shown the molecular mechanism underlying the therapeutic effect of BV on cancer. Treatment with BV reduced the proliferation of cervical-cancer cells in a dose- and time-dependent manner. Interestingly, the killing effect of BV was specific to HPV-positive cervical-cancer cell lines, such as Caski and HeLa cells, and not to HPV-negative cervical-cancer cells (C33A). BV reduced the expression of HPV E6 and E7 at RNA and protein levels, leading to an increase in the expression of p53 and Rb in Caski and HeLa cells. Further, BV decreased the levels of cell-cycle proteins, such as cyclin A and B, and increased the levels of cell-cycle inhibitors, such as p21 and p27. BV significantly induced apoptosis and inhibited wound healing and migration of cervical-cancer cells. It also upregulated the expression of pro-apoptotic BAX and downregulated the expression of anti-apoptotic Bcl-2 and Bcl-XL. Cleavage of caspase-3, caspase-9, and PARP were also induced by BV treatment, whereas the phosphorylation of mitogenic signaling-related proteins, such as AKT, JNK, p38, and ERK, were downregulated. Our results indicate that BV has a therapeutic selectivity for HPV-positive malignant cells, so further clinical studies are needed to assess its clinical application.

Spatholobus suberectus Water Extract induces Apoptotic Cell Death via Inhibition of Cell Cycle in Jurkat Human Leukemia Cell Line (계혈등 추출물이 Jurkat T 임파구의 세포고사 및 세포주기 억제에 미치는 효과)

  • Cho Nam Su;Jung Woo Cheol;Na Heon Sik;Song Young Jun;Lee Kye Seung;Lee In;Jeon Byung Hun;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2004
  • Spatholobus suberectus belonging the family Leguminosae has been used for promoting blood circulation, removing blood stasis, tonifying the blood, relaxing tendons, stopping internal bleeding and eliminating dampness in oriental traditional medicine. This study investigates whether the water extracts of S. suberectus induce apoptotic cell death in Jurkat T-acute lymphoblastic leukemia (ALL) cells. Jurkat cells were increased inhibitions of cell viability in a concentration-dependent manner by S. suberectus, as measured by cell morphology. The capability of S. suberectus to induce apoptosis was associated with proteolytic cleavage of specific target protein such as poly (ADP­ribose)polymerase protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of S. suberectus on cell cycle progression. G1 checkpoin related gene products tested (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by S. suberectus may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Cell differentiation and Anti-oxydative effect of Dioscoreae Rhizoma on HeLa Cell (산약(山藥)의 HeLa cell 분화에 미치는 영향과 항산화효과에 대한 연구)

  • Jun, Yung-Joon;Son, Mi-Young;Khil, Mee-Jeong;Sung, Jung-Suk;Jeong, Jae-Cheol;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.2
    • /
    • pp.139-154
    • /
    • 2007
  • Purpose: This study examined the Cell differentiation and the anti-oxidative effect of Dioscoreae Rhizoma on HeLa cells. We are interested in whether Dioscoreae Rhizoma is capable of causing apoptosis processes on HeLa cell, and whether cotreatment of NCS with Dioscoreae Rhizoma reduces cell viability. Methods: We used aqueous extract to treat HeLa cell with different concentrations treated with a water or a MeOH extract of Dioscoreae Rhizoma (0, x10, x20, x40, x80). The MTT (3, (4, 5-dimethyl-thiazol) 2, 5-diphenyl-tetraxolium bromide) reduction assay was employed to quantify the differences in cell activity and viability. Cells were stained with DAPI and visualized by fluorescent Microscope. The caspase-3, Bcl-2, PARP, p53 expression level was monitored using western-blotting techniques. The patterns of the changes in expression were scanned and analyzed. Results: The survival rate of cells treated with Dioscoreae Rhizoma extracts increased by 20% at specific concentration. The other side Dioscoreae Rhizoma extracts induced apoptotic features including chromatin condensation and fragmentation. And Dioscoreae Rhizoma extracts increased the expression of caspase-3, p53 and the cleavage of PARP protein. However, co-treatment with Dioscoreae Rhizoma with NCS attenuated the activations of p53 and PARP protein that were mediated by NCS treatment alone. This is indicated Dioscoreae batatas extracts attenuated cytotoxicity induced by oxidative agents including NCS. Conclusion: Our results suggest Dioscoreae Rhizoma extracts induce cell differentiation or apoptosis connected with concentration. Further elucidation of concentration of Dioscoreae Rhizoma awaits many other biochemical investigative studies.

  • PDF

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • Choi, In-Kyou;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF