• Title/Summary/Keyword: apoptotic death

Search Result 1,186, Processing Time 0.032 seconds

Neuroprotective Effects and Physicochemical Characteristics of Milk Fortified with Fibroin BF-7 (BF-7 강화 우유의 뇌기능보호 효과 및 물리화학적 특성)

  • Choi, Gooi-Hun;Jo, Mi-Na;Moon, Sun-Hee;Lim, Sung-Min;Jung, A-Ram;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.431-436
    • /
    • 2008
  • The impact of storage on the neuroprotective effects against $A\beta$-induced cell death and physicochemical characteristics of milk fortified with BF-7 were investigated. The BF-7 milk exerted protection of neuronal cells SK-N-SH from amyloid beta ($A\beta$)-induced neuronal stress. Our results showed that incubation of the cell with pretreated BF-7 milk, significantly attenuated apoptotic stress by $A\beta$, considered in cell morphology and nucleus shape. The general compositions were maintained consistently in BF-7 fortified milk (BF-7 milk). The BF-7 did not make any disturbance on pH and titratable acidity. The color change was not detected, either. Also, any microorganism had not been detected with more than 7 days storage at $4^{\circ}C$. In sensory evaluation study. the average scores of each sensory attribute were quite similar with plain milk. In conclusion, our results strongly indicate that BF-7 characteristics are quite adequate to be included in milk and BF-7 milk is still working well on neuro-protection, result in enforcing our brain and delaying neurodegeneration.

Epigallocatechin gallate attenuates L-DOPA-induced apoptosis in rat PC12 cells

  • Lee, Myung-Yul;Choi, Eun Joo;Lee, Myung-Koo;Lee, Jae-Joon
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • In this study, the protective effects of EGCG on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced oxidative cell death in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease, were investigated. Treatment with L-DOPA at concentrations higher than $150{\mu}M$ caused cytotoxicity in PC12 cells, as determined using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry detection. The apoptotic ratio was similar in cells treated with $100{\mu}M$ EGCG plus $150{\mu}M$ L-DOPA (5.02%) and the control (0.96%) (P > 0.05), and was lower than that of cells treated with L-DOPA only (32.24%, P < 0.05). The generation level of ROS (% of control) in cells treated with EGCG plus L-DOPA was lower than that in cells treated with L-DOPA only (123.90% vs 272.32%, P < 0.05). The optical density in production of TBARS in cells treated with L-DOPA only was higher than that in the control ($0.27{\pm}0.05$ vs $0.08{\pm}0.04$, P < 0.05), and in cells treated with EGCG only ($0.14{\pm}0.02$, P < 0.05), and EGCG plus L-DOPA ($0.13{\pm}0.02$, P < 0.05). The intracellular level of GSH in cells treated with EGCG plus L-DOPA was higher than that in cells treated with L-DOPA only ($233.25{\pm}16.44$ vs $119.23{\pm}10.25$, P < 0.05). These results suggest that EGCG protects against L-DOPA-induced oxidative apoptosis in PC12 cells, and might be a potent neuroprotective agent.

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실(瓜蔞實)의 세포고사 유도 효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Han, Mi-Jeong;Ryu, Do-Gon
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2006
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer. Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-Inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly. The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

  • PDF

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line

  • Hwang, Eunjoo;Hwang, Seong-Hye;Kim, Jongjin;Park, Jin Hyun;Oh, Sohee;Kim, Young A;Hwang, Ki-Tae
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.240-248
    • /
    • 2018
  • Purpose: This study aimed to validate the synergistic effect of ABT-737 on docetaxel using MDA-MB-231, a triple negative breast cancer (TNBC) cell line overexpressing B-cell lymphoma-2 (Bcl-2). Methods: Western blot analysis was performed to assess expression levels of Bcl-2 family proteins and caspase-related molecules. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution was determined by flow cytometry analysis. Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) was used for pretreatment to assess the role of caspases. Results: Cell viability of MDA-MB-231 after combination treatment with ABT-737 and docetaxel was significantly lower than that after docetaxel or ABT-737 monotherapy based on MTT assay (both P < 0.001), with a combination index of 0.41. The proportion of sub-G1 population after combination treatment was significantly higher than that after docetaxel or ABT-737 monotherapy (P = 0.001, P = 0.003, respectively). Pretreatment with z-VAD-fmk completely restored cell viability of MDA-MB-231 from apoptotic cell death induced by combination therapy (P = 0.001). Although pro-caspase-8 or Bid did not show significant change in expression level, pro-casepase-9 showed significantly decreased expression after combination treatment. Cleaved caspase-3 showed increased expression while poly (ADP-ribose) polymerase cleavage was induced after combination treatment. However, hypoxia-inducible factor 1-alpha and aldehyde dehydrogenase 1 totally lost their expression after combination treatment. Conclusion: Combination of ABT-737 with docetaxel elicits synergistic therapeutic effect on MDA-MB-231, a TNBC cell line overexpressing Bcl-2, mainly by activating the intrinsic pathway of apoptosis. Therefore, adjunct of ABT-737 to docetaxel might be a new therapeutic option to overcome docetaxel resistance of TNBCs overexpressing Bcl-2.

Relationship between ganglioside expression and anti-cancer effects of a plant-derived antibody in breast cancer cells

  • Ju, Won Seok;Song, Ilchan;Park, Se-Ra;Seo, Sang Young;Cho, Jin Hyoung;Min, Sung-Hun;Kim, Dae-Heon;Kim, Ji-Su;Kim, Sun-Uk;Park, Soon Ju;Ko, Kisung;Choo, Young-Kug
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK ($mAb^P$ COK) can specifically bind to various types of cancer cell lines. The target protein of $mAb^P$ COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of $mAb^P$ COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with $mAb^P$ COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with $mAb^P$ COK may have chemo-preventive therapeutic effects against human breast cancer.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.

Toxoplasma gondii Induces Apoptosis via Endoplasmic Reticulum Stress-Derived Mitochondrial Pathway in Human Small Intestinal Epithelial Cell-Line

  • Wang, Hao;Li, Chunchao;Ye, Wei;Pan, Zhaobin;Sun, Jinhui;Deng, Mingzhu;Zhan, Weiqiang;Chu, Jiaqi
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.6
    • /
    • pp.573-583
    • /
    • 2021
  • Toxoplasma gondii, an intracellular protozoan parasite that infects one-third of the world's population, has been reported to hijack host cell apoptotic machinery and promote either an anti- or proapoptotic program depending on the parasite virulence and load and the host cell type. However, little is known about the regulation of human FHs 74 small intestinal epithelial cell viability in response to T. gondii infection. Here we show that T. gondii RH strain tachyzoite infection or ESP treatment of FHs 74 Int cells induced apoptosis, mitochondrial dysfunction and ER stress in host cells. Pretreatment with 4-PBA inhibited the expression or activation of key molecules involved in ER stress. In addition, both T. gondii and ESP challenge-induced mitochondrial dysfunction and cell death were dramatically suppressed in 4-PBA pretreated cells. Our study indicates that T. gondii infection induced ER stress in FHs 74 Int cells, which induced mitochondrial dysfunction followed by apoptosis. This may constitute a potential molecular mechanism responsible for the foodborne parasitic disease caused by T. gondii.