• Title/Summary/Keyword: apoptotic death

Search Result 1,186, Processing Time 0.032 seconds

Apoptosis Detected by in Situ DNA end-extension in Osteosarcomas - In relation to p53 and Bcl-2 expression -

  • Park, Yong-Koo;Yang, Moon-Ho;Park, Hye-Rim;Kim, Youn-Wha;Lee, Ju-Hie
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • Objective : The objective of this study was to compare expression of various proto-oncogenes and rates of apoptosis in osteosarcoma patients. Modulation of apoptosis may influence resistance to chemotherapy and therefore affect the outcome of cancer treatment. Osteosarcoma is one of the most fatal malignancies in young adolescents and investigation of the role of apoptotic cell death is warranted in relation to chemotherapy and tumor outcome. Design : The terminal deoxynucleotidyl transferase to exposed 3'-hydroxyl termini of DNA (TUNEL method) staining method has been applied for the in situ detection of DNA double strand breaks. Patients : Thirty-three osteosarcomas in various stages of differentiation from twenty-nine patients were investigated immunohistochemically for p53, Bcl-2 and TUNEL method for apoptosis. Results and conclusion; We have found that higher level of wild type p53 were correlated with enhanced expression of apoptosis. Increased apoptosis rates were found in cases of negative Bcl-2 expression. In the present study, we have concluded that a significant proportion of osteosarcoma, a tumor in which resistance to chemotherapy often occurs, express high levels of p53 and low levels of Bcl-2. Our data provide further evidence for cross-talk between Bcl-2 and p53 and suggests that these genes are important determinants of drug-induced apoptosis.

  • PDF

Effect of Resveratrol on Cell Differentiation and Mineralization in Cultured Odontoblasts

  • Shin, Sang Hun;Kim, Jae-Sung;Kim, Su-Gwa;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • Resveratrol (3,4',5,-trihydroxystilbene), a phytoalexin present in grapes, exerts a variety of actions to reduce superoxides, prevents diabetes mellitus, and inhibits inflammation. Resveratrol acts as a chemo-preventive agent and induces apoptotic cell death in various cancer cells. However, the role of resveratrol in odontoblastic cell differentiation is unclear. In this study, the effect of resveratrol on regulating odontoblast differentiation was examined in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. Resveratrol significantly accelerated mineralization as compared with the control culture in differentiation of MDPC-23 cells. Resveratrol significantly increased expression of ALP mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly accelerated expression of Col I mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly increased expressions of DSPP and DMP-1 mRNAs as compared with the control in differentiation of MDPC-23 cells. Treatment of resveratrol did not significantly affect cell proliferation in MDPC-23 cells. Results suggest resveratrol facilitates odontoblast differentiation and mineralization in differentiation of MDPC-23 cells, and may have potential properties for development and clinical application of dentin regeneration materials.

Regulation of melanocyte apoptosis by Stathmin 1 expression

  • Zhang, Yan;Xiong, Jianjun;Wang, Jiali;Shi, Xianping;Bao, Guodong;Zhang, Yang;Zhu, Zhenyu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.765-770
    • /
    • 2008
  • Undesirable hyperpigmentation that can arise from increased melanocyte activity may be alleviated by targeting active melanocytes for apoptosis. The role of Stathmin 1 as an important regulator of microtubule dynamics is well documented. The current study examined the potential of Stathmin 1-targeting strategies in eliminating active melanocytes. A vector to overexpress Stathmin 1 and vectors to express three distinct small hairpin RNAs to knockdown Stathmin 1 expression in normal melanocytes were produced and in cell cultures acted accordingly. Both overexpression and knockdown of Stathmin 1 led to a marked increase in melanocyte apoptosis, as indicated by the accumulation of apoptotic cells and increased levels of cleaved caspase-3. Both up- and down-regulation of Stathmin 1 expression inhibited the activity of differentiated melanocytes, as indicated by decreases in both melanin production and tyrosinase activity. Taken together, these results indicate that hyperactive melanocytes can be inhibited by altering Stathmin 1 expression.

Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells (5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과)

  • Lee, Yun-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

Changes in Mitogen-activated Protein Kinase Activities During Acidification-induced Apoptosis in CHO Cells

  • Kim, Jin-Young;Jeong, Dae-Won;Roh, Sang-Ho;Min, Byung-Moo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.85-90
    • /
    • 2005
  • Homeostatic pH is very important for various cellular processes, including metabolism, survival, and death. An imbalanced-pH might induce cellular acidosis, which is involved in many abnormal events such as apoptosis and malignancy. One of several factors contributing to the onset of metabolic acidosis is the production of lactate and protons by lactate dehydrogenase (LDH) in anaerobic glycolysis. LDH is an important enzyme that catalyzes the reversible conversion of pyruvate to lactate. This study sought to examine whether decreases in extracellular pH induce apoptosis of CHO cells, and to elucidate the role of mitogen-activated protein kinases (MAPKs) in acidification-induced apoptosis. To test apoptotic signaling by acidification we used CHO dhfr cells that were sensitive to acidification, and CHO/anti-LDH cells that are resistant to acidification-induced apoptosis and have reduced LDH activity by stable LDH antisense mRNA expression. In the present study, cellular lactic acid-induced acidification and the role of MAPKs signaling in acidification-induced apoptosis were investigated. Acidification, which is caused by $HCO{_3}^-$-free conditions, induced apoptosis and MAPKs (ERK, JNK, and p38) activation. However, MAPKs were slightly activated in acidic conditions in the CHO/anti-LDH cells, indicating that lactic acid-induced acidification induces activation of MAPKs. Treatment with a p38 inhibitor, PD169316, increased acidification-induced apoptosis but apoptosis was not affected by inhibitors for ERK (U0126) or JNK (SP600125). Thus, these data support the hypothesis that activation of the p38 MAPK during acidification-induced apoptosis contributes to cell survival.

Extracellular ATP Induces Apoptotic Signaling in Human Monocyte Leukemic Cells, HL-60 and F-36P

  • Yoon, Mi-Jung;Lee, Hae-Jin;Kim, Jae-Hwan;Kim, Dong-Ku
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1032-1041
    • /
    • 2006
  • Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death. from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/G0. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.

Ethanol Extract of Fermented Soybean, Chungkookjang, Inhibits the Apoptosis of Mouse Spleen, and Thymus Cells

  • Kim, Han-Bok;Lee, Hye-Sung;Kim, Sook-Jin;Yoo, Hyung-Jae;Hwang, Jae-Sung;Chen, Gang;Youn, Hyun-Joo
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.256-261
    • /
    • 2007
  • Apoptosis is a step of the cell cycle which is important in the regulation of immune cell populations. Chungkookjang is a Korean traditional fermented soybean containing microorganisms, enzymes, and bioactive compounds which was used in the treatment of mouse spleen as well as thymus cells (CH1-fermented soybean containing barley, wormwood, and sea tangle; CH2-fermented soybean) and was found to exhibit substantially reduced small DNA fragmentation. An MTT assay showed that the treatment of CH1 and CH2 into the mouse splenocytes and thymocytes sharply increased their survival. Moreover, a FACS analysis also showed that CH1 and CH2 are effective at suppressing the apoptosis of splenocytes and thymocytes. The fermented soybean isoflavone concentrations, which are implicated in lowering breast and prostate cancers, lowering the risk of cardiovascular diseases, and improving bone health, were determined using Capillary Electrophoresis-Electrochemical Detection (CE-ED). The amount of Daidzein in fermented soybean significantly increased by 44-fold dramatically, compared with those in unfermented soybean. In this study, we demonstrated that ethanol extracts of Chungkookjang promote the survival of the mouse spleen and thymus cells in culture by suppressing their apoptotic death. Future studies should investigate which genes are related to apoptosis of the immune cells.

Microarray Analysis of Oxygen-Glucose-Deprivation Induced Gene Expression in Cultured Astrocytes

  • Joo, Dae-Hyun;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.263-271
    • /
    • 2006
  • Since astrocytes were shown to play a central role in maintaining neuronal viability both under normal conditions and during stress such as ischemia, studies of the astrocytic response to stress are essential to understand many types of brain pathology. The micro array system permitted screening of large numbers of genes in biological or pathological processes. Therefore, the gene expression patterns in the in vitro model of astrocytes following exposure to oxygen-glucose deprivation (OGD) were evaluated by using the micro array analysis. Primary astrocytic cultures were prepared from postnatal Swiss Webster mice. The cells were exposed to OGD for 4 hrs at $37^{\circ}C$ prior to cell harvesting. From the cultured cells, we isolated mRNA, synthesized cDNA, converted to biotinylated cRNA and then reacted with GeneChips. The data were normalized and analyzed using dChip and GenMAPP tools. After 4 hrs exposure to OGD, 4 genes were increased more than 2 folds and 51 genes were decreased more than 2 folds compared with the control condition. The data suggest that the OGD has general suppressive effect on the gene expression with the exception of some genes which are related with ischemic cell death directly or indirectly. These genes are mainly involved in apoptotic and protein translation pathways and gap junction component. These results suggest that microarray analysis of gene expression may be useful for screening novel molecular mediators of astrocyte response to ischemic injury and making profound understanding of the cellular mechanisms as a whole. Such a screening technique should provide insights into the molecular basis of brain disorders and help to identify potential targets for therapy.

Antiproliferative Effect of Chungjogupae-tang Treatment was Associated with the Inhibition of Prostaglandin E2 Release in Human Lung Carcinoma Cells (인체폐암세포의 증식 및 prostaglandin E2 생성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Im, Jae-Hyung;Kim, Hoon;Byun, Mi-Kyeon;Kam, Chul-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.966-972
    • /
    • 2006
  • The effect of water extract of Chungjogupae-tang (CJGPT) was investigated _on the growth of human lung carcinoma A549 cells. Methods: MTT assay and fluorescent microscope peformed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition, the quantitative RT-PCR was used to examine to lung cancer cells growth, and Prostaglandin E2 activity were measured. Results: Exposure of A549 cells to CJGPT respited in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiproliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21 (WAFl/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1 , which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Conclusion: These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

  • Lee, Yang-Jin;Park, Chang-Eun;Kim, Jong-Hyun;Sohn, Hae-Jin;Lee, Jin-Young;Jung, Suk-Yul;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.285-290
    • /
    • 2011
  • Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A $^{51}Cr$ release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-${\alpha}$, IL-6, and IL-$1{\beta}$, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.