• Title/Summary/Keyword: apoptotic cytotoxicity

Search Result 339, Processing Time 0.025 seconds

Caspase-11 Promoter-GFP Construct as a Dual Reporter of Cytotoxicity and Inflammation

  • Shin, Ki-Soon;Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2006
  • Caspase-11 has been known as a dual regulator of apoptosis and inflammatory response. An unusual feature of caspase-11 is that its expression is induced by apoptotic or proinflammatory stimuli. Utilizing these unusual features of caspase-11, we have developed a simple and sensitive assay method to screen pro- or anti-apoptotic/inflammatory molecules. To develop this assay method, we generated a reporter construct where GFP expression is regulated by caspase-11 promoter. When several types of cultured cells were transfected with this reporter construct and subsequently treated with various apoptotic or proinflammatory molecules, expression of GFP by the activation of caspase-11 promoter was easily detected by fluorescence microscopy or spectrofluorometry. In addition, a reduction of the GFP fluorescence was detected when an agent reported to suppress caspase-11 induction was applied. These results suggest that our reporter system can be used to screen pro- or anti-apoptotic/inflammatory molecules.

Effects of Tributyltin Chloride on L-DOPA-Induced Cytotoxicity in PC12 Cells

  • Lee, Jae-Joon;Kim, Yu-Mi;Park, Seung-Kook;Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.645-650
    • /
    • 2006
  • Tributyltin chloride (TBTC) at concentrations of $0.5-1.0\;{\mu}M$ inhibits dopamine biosynthesis in PC12 cells. In this study, the effects of TBTC on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced cytotoxicity in PC12 cells were investigated. TBTC at concentrations up to $1.0\;{\mu}M$ neither affected cell viability, nor induced apoptosis after 24 or 48 h in PC12 cells. However, TBTC at concentrations higher than $2.0\;{\mu}M$ caused cytotoxicity through an apoptotic process. In addition, exposure of PC12 cells to non-cytotoxic (0.5 and $1.0\;{\mu}M$) or cytotoxic $(2.0\;{\mu}M)$ concentrations of TBTC in combination with L-DOPA (20, 50 and $100\;{\mu}M$) resulted in a significant increase in cell loss and the percentage of apoptotic cells after 24 or 48 h compared with TBTC or L-DOPA alone. The enhancing effects of TBTC on L-DOPA-induced cytotoxicity were concentration- and treatment time-dependent. These data demonstrate that TBTC enhances L-DOPA-induced cytotoxicity in PC 12 cells.

Effect of Several Species of the Family Rubiacea on Cytotoxicity and Apoptosis in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Kim Sung-Hoon;Jeon Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.187-192
    • /
    • 2006
  • Herbal medicines have been utilized to treat a variety of diseases, including cancer. Several species of the family rubiaceae have been reported to have antitumor activity. In this study, we report the cytotoxicity and antitumor activity exhibited dy the methanol extracts prepared from Rubia radix (RRME), Uncaria gambir (UGME) and Oldenlandia diffusa (ODME) (family: Rubiaceae) against human promyleloid leukemia cell line, HL-60. The cytotoxicity of RRME (2~20 ${\mu}g/ml$), UGME (20~200 ${\mu}g/ml$) and ODME (20~200 ${\mu}g/ml$) were assessed dy the MTT reduction assay. IC50 values for RRME, UGME and ODME were 11.0, 99.5 and 106.1 ${\mu}g/ml$, respectively. When the HL-60 cells were treated with RRME (10 ${\mu}g/ml$), UGME (120 ${\mu}g/ml$) and ODME (140 ${\mu}g/ml$) for 24 h, several apoptotic characteristics such as DNA fragmentation and morphologic changes were observed. Furthermore, flow cytometric analysis was peformed to determine the percent of apoptotic cells. The poupulation of sub-G1 hypodiploid cells was increased 37.49% in RRME treatment, 12.49% in UGME treatment and 7.21% in ODME treatment compared with untreated control cells (2.64%). To further confirm apoptotic cell death, we assayed caspase-3, -8 and -9 activities in RRME, UGME and ODME-treated cells. After treatment of RRME, UGME and ODME for 12 h, caspase-3, -8 and -9 activities significantly increased.compared to untreated control cells. These results show that RRME, UGME and ODME induced apoptotic cell death in HL-60 cells and may have a possibility of potential antitumor activities.

Study on Synergistic Anti-tumor Effect of Combination with Adriamycin and Palginhonhapwhajucwhan (팔진탕합화적환(八珍湯合化積丸)과 Adriamycin의 병용처리시 나타나는 synergistic 항종양(抗腫瘍) 효과(效果)에 관(關)한 작용기전 연구(硏究))

  • Moon, Gu;Moon, Seok-Jae;Won, Jin-Hee;Cho, Jung-Yun;Park, Sang-Gu;Song, Bong-Gil;Park, Rae-Gil;Lee, Byung-Gu
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.443-452
    • /
    • 2000
  • Objective : This study was designed to evaluate the synergistic effect on cytotoxicity of combination with adriamycin and Palginhonhapwhajucwhan, a traditional prescription for cancer treatment in oriental medicine, in Chang, HL-60, Hep-3B and Alexander cells. Methods : We observed cell viability in Chang, HL-60, Hep-3B, and Alexander cells by crystal violet staining. Those cells were treated with various concentrations of adriamycin alone, Palginhonhapwhajucwhan alone and combination of two medications for 10 hr. On condition of $0.5{\mu}l/ml$ adriamycin alone, $15.6{\mu}l/ml$ Paljintanghapwhajucwhan alone and combination of two medications, at first, we observed colony forming of Chang and HL-60 cells. Second, we observed DNA fragmentation by agarose electrophoresis in Chang, HL-60, Hep-38 and Alexander cells. Third, we measured the catalytic activation of caspase-1, 2, 3, 6, 8, and 9 protease in Chang cells and caspase-3 protease in Chang, HL-60, Hep-3B and Alexander cells by using fluorogenic substrate. Finally, we isolated mRNA of Fas in Chang, HL-60, Hep-38 and Alexander cells and observed that Fas gene was amplified by RT-PCR Results : 1. The combination of adriamycin and Palginhonhapwhajucwhan synergistically augmented the cytotoxicity of Chang and HL-60 cells whereas did not in Hep-38 and Alexander cells. 2. Cotreatment of two drugs also markedly inhibited the colony forming ability both in Chang and HL-60 cells. 3. The cytotoxicity of these medicatons was revealed as apoptosis characterized by high molecular wight DNA fragmentaton. 4. The apoptotic cytotoxicity was mediated by activation of caspase-3 protease in Chang cells. 5. Synergistic increase in apoptotic cytotoxicity by combination of two medications was dependent on the expression of Fas in cancer cells. Conclusions : Combination of adriamycin and Palginhonhapwhajucwhan significantly augmented apoptotic cytotoxicity of Fas-positive cells such as Chang and HL-60 cells via acticaton of apoptosis signaling pathway.

  • PDF

Cytotoxic Effects on Human Cancer Cells and Apoptosis of a Sesquiterpene Lactone from Saussure lappa

  • Jin, Mirim;Ryu, Jae-Ha;Ryu, Shi-Yong;Chung, Kyu-Sun
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • In order to study the cytotoxic properties of sesquitepenes, dehydrocostus lactone (DL) and costunolide from Saussurea lappa, cytotoxicity was measured by SRB method using various human cancer cell lines. Dehydrocostus lactone(DL) and costunolide exhibited significant cytotoxicity against A-549, SK-OV-3, SK-MEL-2, XF-498 and HCT 15 cells. The U937 human leukemia cells treated with DL showed several apoptotic evidences like chromosome condensation and formation of apoptotic bodies. From the results of FACS analysis, early apoptosis was observed by phosphatidylserine externalization detected by annexin V-FITC. Furethermore, these studies determined hypodiploid contents and effects on the cell phase distribution of DL-treated U937 cells. After exposure of U937 cells to $30\mu\textrm{M}$ DL effectively led to G2/M modified cell cycle distribution within 24hr. These observations suggest that DL can be used efficiently for the cancer treatment.

  • PDF

Protective Effect of Palmul-tang on Glutamate Induced Cytotoxicity in C6 Glial cells (Glutamate로 유도된 C6 glial 세포의 독성에 대한 팔물탕(八物湯)의 보호 효과)

  • Shin, Yong-Jeen;Shin, Sun-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2012
  • This study was designed to elucidate the mechanism of the cytoprotective effect of the Palmul-tang (PMT) on glutamate induced cytotoxicity in rat C6 glial cells. We determined the increase of cell viability by PMT on glutamate-induced death of C6 glial cell. On some experiments, glutamate induced cell death to be an apoptotic phenomena characterized by G1 arrest in cell cycle, chromatin condensation, DNA fragmentation in C6 glial cells. However, pre-treatment of PMT inhibited characteristic apoptotic phenomena. One of the main mediator of glutamate-induced cytotoxicity was known to generation of reactive oxigen species. In this study, PMT attenuated generation of reactive oxigen species by glutamate through down-regulation of NOX1 expression in C6 glial cells. Furthermore, PMT regulated Bcl2 families and caspase proteins, which contribute the cell survival or death. This study suggests that PMT may be candidate for both of therapeutic and protective prescription.

Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression

  • Kebriaezadeh, Abbas;Ashrafi, Sepehr;Rasouli, Rahimeh;Ebrahimi, Seyed Esmaeil Sadat;Hamedani, Morteza Pirali;Assadi, Artin;Saffari, Mostafa;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • Dendrimers are one of the most appropriate nanocaries for imaging moieties in imaging applications.The purpose of this study was the evalution of cytotoxicity and inducing apoptosis of dendrimers. This study was conducted in order to investigate the metastasis suppression effect of dendrimer in human breast MCF-7 cell line and finding the nanoparticle protein corona in biological enviromental. Dendrimer cytotoxicity effect was assessed by MTT assay. The mRNA experession level of KAI1 as a metastasis suppressor gene, Bax as Pro- apoptotic gene, Bcl-2 as an anti-apoptotic gene and GAPDH as a housekepping gene were determined by real-time PCR assays.concentration-dependent nanoparticle cytotoxicity effect was proofed at range of 1-2 mg/mL in 24 hours, significant upregulation of mRNA expression of Bax, was observed whereas expression of anti-apoptotic Bcl-2 was down-regulated, also expression of metastasis suppressor gene KAI1 was up-regulated. So far a few studies confirmed apoptosis enhancement effect of dendrimers in MCF-7 cell line via bax/bcl-2 pathways. dendrimer nanoparticles was able to act as metastase inhibitor via upregulation of KAI1 gene.

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • Kim, Hyung Il;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.95-104
    • /
    • 2014
  • The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

Induction of Cytotoxicity and Apoptosis in HT-29 Human Colon Carcinoma Cells by a Gleditsiae Semen Extract

  • Cha, Mi-Ran;Kim, Ju-Young;Hwang, Ji-Hwan;Park, Hae-Ryong
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.260-264
    • /
    • 2007
  • Gleditsiae Semen (GS) has been used in both Korea and China as herbal medicine for the treatment of cephalalgia, catharsis, and other diseases. However, the apoptosis of GS against human cancer cells has not previously been investigated. The primary objective of this study was to determine the mechanisms inherent in GS-induced cytotoxicity and apoptosis, using methanolic extract of GS (GSE) in HT-29 human colon carcinoma cells. We found that GSE induced cytotoxicity in HT-29 cells in a dose-dependent manner, and this effect was verified via a lactate dehydrogenase release assay and a colony formation assay. In particular, HT-29 cells showed extensive cell death when treated with $50\;{\mu}g/mL$ of GSE; the calculated $IC_{50}$ value was $20\;{\mu}g/mL$. It induced characteristic apoptotic signs in HT-29 cells, including chromatin condensation and DNA fragmentation, occurring within 6-24 hr when the cells were treated at a concentration of $50\;{\mu}g/mL$. Interestingly, we detected the activation of caspase-3 and -9, but not caspase-8, and apoptotic bodies in GSE-treated HT-29 cells. Collectively, our results indicate that GSE induces apoptosis via a mitochondria-mediated apoptotic pathway, and these findings may be significant with regard to the development of a new drug for the treatment of human colon carcinoma cells.

Terpinen-4-ol Induces Autophagic and Apoptotic Cell Death in Human Leukemic HL-60 Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7537-7542
    • /
    • 2013
  • Background: Terpinen-4-ol, a monoterpene, is found as the main component of essential oil extracts from many plants. In this study apoptotic and autophagic types of cell death induced by terpinen-4-ol and associated mechanisms were investigated in human leukemic HL-60 cells. Materials and Methods: The cytotoxicity of human leukemic U937 and HL-60 cells was determined by MTT assay. Cytochrome c release, expression of Bax, Bcl-2, Bcl-xl and cleaved Bid were determined by Western blotting. Cell morphology was examined under a transmission electron microscope. LC3-I/II, ATG5 and Beclin-1 levels were detected by immunoblotting. Results: Terpinen-4-ol exhibited cytotoxicity to human leukemic HL-60 but not U937 cells. The apoptotic response to terpinen-4-ol in HL-60 cells was due to induction of cytochrome c release from mitochondria and cleavage of Bid protein after the stimulation of caspase-8. There was a slightly decrease of Bcl-xl protein level. The characteristic cell morphology of autophagic cell death was demonstrated with multiple autophagosomes in the cytoplasm. At the molecular level, the results from Western blot analysis showed that terpinen-4-ol significantly induced accumulation of LC3-I/II, ATG5 and Beclin-1, regulatory proteins required for autophagy in mammalian cells. Conclusions: Terpinen-4-ol induced-human leukemic HL-60 cell death was via both autophagy and apoptosis.