• Title/Summary/Keyword: apoptosis-metastasis

Search Result 185, Processing Time 0.023 seconds

Scabraside D Derived from Sea Cucumber Induces Apoptosis and Inhibits Metastasis via iNOS and STAT-3 Expression in Human Cholangiocarcinoma Xenografts

  • Assawasuparerk, Kanjana;Rawangchue, Thanakorn;Phonarknguen, Rassameepen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2151-2157
    • /
    • 2016
  • Scabraside D, a sulfated triterpene glycoside, was extracted from the sea cucumber Holothuria scabra. It shows anti-proliferation in many of cancer cell lines, but the function and mechanisms of action of scabraside D in human cholangiocarcinoma (HuCCA) have not previously determined. In this study, we investigated the activity of scabraside D on HuCCA cell apoptosis, lymphangiogenesis and metastasis in a nude mouse model. Scabraside D induced signs of apoptosis, such as cell shrinkage, nuclear condensation, nuclear fragmentation and DNA fragmentation on TUNEL assays, while effectively decreasing expression of BCl-2 but increasing caspase-3 gene level expression. Immunohistochemistry revealed that scabraside D significantly reduced lymphatic vessel density (LVD). Moreover, scabraside D treatment significantly decreased VEGF-C, MMP-9 and uPA gene expression, which play important roles in the lymphangiogenesis and invasion of cancer cells in metastasis processes. Quantitative real-time PCR showed that scabraside D significantly decreased iNOS and STAT-3 gene expression. This study demonstrated that scabraside D plays a role in activation of HuCCA tumor apoptosis and inhibition of lymphangiogenesis, invasion and metastasis through decreasing BCl-2, MMP-9, uPA and VEGF-C and increasing caspase-3 expression by suppression of iNOS and STAT-3 expression. Therefore, scabraside D could be a promising candidate for cholangiocarcinoma treatment.

Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells

  • Putri, Herwandhani;Jenie, Riris Istighfari;Handayani, Sri;Kastian, Ria Fajarwati;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2683-2688
    • /
    • 2016
  • A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV-0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with $IC_{50}$ values of $94.9{\mu}M$ and $49.0{\pm}0.2{\mu}M$, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent.

Antivascular Therapy via Inhibition of Receptor Tyrosine Kinases in an Orthotopic Murine Model of Salivary Adenoid Cystic Carcinoma

  • Park, Young-Wook;Kang, Hye-Jeong;Park, Jung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.59-70
    • /
    • 2008
  • Purpose: We evaluated the therapeutic effect of AEE788, a dual inhibitor of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) receptor tyrosine kinases on human salivary adenoid cystic carcinoma (ACC) cells growing in nude mice. Experimental Design: We examined the effects of AEE788 on salivary ACC cell growth and apoptosis. To determine the in vivo effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 (50 mg/kg) three times per week, injected paclitaxel ($200{\mu}g$) once per week, AEE788 plus paclitaxel, or placebo. Mechanisms of in vivo AEE788 activity were determined by immunohistochemical analysis. Results: Treatment of salivary ACC cells with AEE788 led to growth inhibition and induction of apoptosis. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. Furthermore, AEE788 potentiated growth inhibition and apoptosis of ACC tumor cells mediated by paclitaxel. Tumors of mice treated with AEE788 and AEE788 plus paclitaxel exhibited down-regulation of activated EGFR and its downstream mediators (Akt and MAPK), increased tumor and endothelial cell apoptosis, and decreased microvessel den-sity, which correlated with a decrease in the level of MMP-9, MMP-2 and bFGF expression and a decrease in the incidence of vascular metastasis. Conclusions: These data show that tumor-associated endothelial cells are important in the process of tumor-metastasis. And VEGFR can be a molecular target for therapy of metastatic lung lesion of salivary ACC.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.

Effect of dietary changes from high-fat diet to normal diet on breast cancer growth and metastasis (고지방식이에서 일반식이로의 전환이 유방암의 성장 및 전이에 미치는 영향)

  • Park, Seung hwa;Jung, InKyung;Kim, Jung-Hyun
    • Journal of Nutrition and Health
    • /
    • v.53 no.4
    • /
    • pp.369-380
    • /
    • 2020
  • Purpose: It has been previously reported that breast tumor incidence, growth, and metastasis are stimulated by high-fat diet but reduced by caloric restriction. However, few studies have elucidated the effects of dietary change from a high-fat diet after breast cancer initiation. Therefore, in this study, we attempted to provide practical assistance to breast cancer prevention and management by investigating the effects of dietary change from a high-fat diet to normal diet on breast cancer growth and metastasis. Methods: The experimental animals were divided into 2 groups (high-fat diet control [HFC] group and diet restriction [DR] group) and consumed a high-fat diet for 8 weeks. 4T1 cells were transplanted into subcutaneous fat or tail vein to measure the growth and metastasis of breast cancer. The HFC and DR groups continuously ingested either high-fat diet or AIG-93G diet for 5 weeks or 3 weeks, respectively. Cell proliferation and apoptosis markers from tumor tissues were analyzed by Western blot analysis. The data were analyzed using the SPSS 25.0 package program. Results: The results show that the DR group significantly reduced breast tumor initiation, growth, and tumor tissue weight compared to the HFC group. The DR group suppressed tumor growth by decreasing proliferation and inducing apoptosis through down-regulation of Bcl-xL and up-regulation of caspase-3 activity. Furthermore, the DR group significantly reduced numbers of metastasized tumors in lung tissues. Conclusion: These results suggest that dietary change from a high-fat diet to normal diet decreased breast growth by reducing cell proliferation and inducing apoptosis and metastasis. Taken together, these results indicate that dietary change to a low-fat and balanced diet might suppress breast tumor growth and metastasis even after tumor diagnosis.

Apoptosis inhibitor 5 increases metastasis via Erk-mediated MMP expression

  • Song, Kwon-Ho;Kim, Seok-Ho;Noh, Kyung Hee;Bae, Hyun Cheol;Kim, Jin Hee;Lee, Hyo-Jung;Song, Jinhoi;Kang, Tae Heung;Kim, Dong-Wan;Oh, Se-Jin;Jeon, Ju-Hong;Kim, Tae Woo
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 2015
  • Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells.However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway. [BMB Reports 2015; 48(6): 330-335]

Inhibitory effect of Erythronium japonicum on the human breast cancer cell metastasis

  • You, Mi-Kyoung;Kim, Min-Sook;Rhyu, Jin;Bang, Mi-Ae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, the inhibitory effect of Erythronium japonicum extracts on the metastasis of MDA-MB-231 human breast cancer cell line was determined. MATERIALS/METHODS: Cells were cultured with DMSO or with 50, 75, 100 or $250{\mu}g/ml$ of Erythronium japonicum methanol or ethanol extract. RESULTS: Both methanol and ethanol extracts significantly inhibited the growth and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. Erythronium japonicum extracts inhibited the adhesion of MDA-MB-231 cells. The invasion of breast cancer cells was suppressed by Erythronium japonicum extracts in a dose-dependent manner. The motility and MMP-2 and MMP-9 activities were also inhibited by both methanol and ethanol extracts. CONCLUSIONS: Our results collectively indicate that Erythronium japonicum extracts inhibit the growth, adhesion, migration and invasion as well as induce the apoptosis of human breast cancer cells. Clinical application of Erythronium japonicum as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

Antitumor effects of ophiopogonin D on oral squamous cell carcinoma

  • Nguyen Thi Kieu Trang;Vu Phuong Dong;Hoon Yoo
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.42-47
    • /
    • 2024
  • Ophiopogonin D (OPD) is a steroidal glycoside derived from Ophiopogon japonicus, a traditional Chinese medicine with diverse biological activities, including antithrombosis, anti-inflammation, and antitussive effects. To investigate the cellular effects and mechanisms of OPD on oral squamous cell carcinoma, cell viability was explored, and the effects of OPD on cell cycle regulators, apoptotic marker proteins, and key proteins involved in metastasis and signaling pathways were examined by MTT assay and Western blotting in YD38 cells. OPD strongly inhibited cell proliferation and induced caspase-dependent apoptosis of YD38 cells by suppressing the cell cycle and activating caspase-3 and poly ADP ribose polymerase. Additionally, OPD suppressed the expression of vital proteins regulating metastasis and proliferation within the integrin/matrix metalloproteinases/FAK and AKT/PI3K/mTor pathways. Thus, OPD can be a potential treatment candidate for gingival cancer.

8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells

  • Eun Kyoung, Choi;Hae Dong, Kim;Eun Jung, Park;Seuk Young, Song;Tien Thuy, Phan;Miyoung, Nam;Minjung, Kim;Dong-Uk, Kim;Kwang-Lae, Hoe
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.219-226
    • /
    • 2023
  • Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOP-induced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.

Survivin, Possible Marker and Prognostic Factor in Oral Squamous Cell Carcinomas

  • Kim, Young-Youn;Kim, Myung-Jin;Choi, Keum-Kang;Hong, Seong-Doo;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2008
  • Survivin is a member of the inhibitors of apoptosis (IAP) family that have been known to inhibit activated caspases in apoptosis. In contrast to most IAP family members, survivin mRNA is expressed during fetal development, is not found in normal adult tissues and is overexpressed again in the cancer. Though survivin expression has been documented in most human cancers, little is known about its expression in OSCC and its potential value as a predictor of cancer survival. The purpose of this study was to investigate survivin expression in OSCC and to evaluate its value as a prognostic marker. We evaluated survivin expressions in cancer lines and OSCC samples and investigated the relationships between survivin expressions and clini-co-pathological parameters including stage, differentiation, proliferation, lymph node metastasis, blood vessel density, and gelatinolytic activity. With immunohistochemistry, we analyzed survivin expression in 38 OSCCs. Patients' clinico-pathological parameters and their survival rate were analyzed to reveal their correlations with Survivin expressions. We cultured oral cancer cell lines and evaluated the correlation between gelatinolytic activities and survivin expressions of them. Survivin protein was observed both in nuclei and cytoplasm of tumor specimens while little or not observed in normal gingival mucosal tissues. Additionally, survivin expressions were correlated with lymph node metastasis, tumor proliferation and survival rate. Survivin expression was observed in 100% of 38 samples of OSCC and its expression levels are statistically associated with the proliferative activity of the tumors, lymph node metastasis and the survival of the patients. Based on these results, survivin is commonly expressed in OSCC and may thus provide valuable prognostic information related with lymph node metastasis, proliferation and survival rate as well as a potential therapeutic target in OSCC.