• 제목/요약/키워드: apocynin

검색결과 15건 처리시간 0.021초

Effect of Apocynin on Acute Lung Injury in Rats Given Interleukin-$1{\alpha}$ Intratracheally

  • Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권6호
    • /
    • pp.482-489
    • /
    • 2011
  • Background: Based on the assertion that apocynin diminishes acute lung injury (ALI) by inhibition of NADPH oxidase, the effect of apocynin was tested in interleukin-$1{\alpha}$ (IL-1)-induced ALI in rats. Methods: IL-1 was insufflated into the trachea of Sprague-Dawley rats to induce ALI, and apocynin (8 mg/kg) was given intravenously for inhibition of NADPH oxidase. In addition, we determined whether apocynin inhibited generation of superoxide anions from isolated human neutrophils. Five hours after IL-1 instillation, lung injury parameters, expression of cytosolic phospholipase A2 (cPLA2) by cells from bronchoalveolar lavage (BAL), an index of oxidative stress in lung tissues (${\gamma}$-glutamyltranspeptidase, activity), and ultrastructure of alveolar type II (AT II) cells were evaluated. Results: Apocynin decreased the generation of free radicals from phorbol myristate (PMA)-activated neutrophils in vitro, but did not ameliorate ALI. IL-1 induced enhancement of the expression of cPLA2 on neutrophils was not altered by apocynin. Conclusion: Apocynin induced suppression of the generation of superoxide anions from neutrophils by inhibition of NADPH oxidase does not attenuate IL-1-induced ALI in rats.

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용 (Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.)

  • 박윤엽
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.818-824
    • /
    • 2009
  • 급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.

Decursin from the Rhizome of Belamcanda chinensis

  • Lee, Sang-Hyun;Ryu, Ji-Young;Son, Dong-Wook;Kim, Kyoung-Soon;Lee, Sang-Chul;Kim, Bak-Kwang
    • Natural Product Sciences
    • /
    • 제10권2호
    • /
    • pp.89-91
    • /
    • 2004
  • Six components were isolated from the $CH_2Cl_2$ fraction of Belamcanda chinensis rhizome by open column chromatography. Their structures were elucidated as ${\beta}-sitosterol$ (1), apocynin (2), decursin (3), iristectorigenin A (4), irigenin (5) and tectorigenin (6) by spectral analysis. Among these compounds, decursin (3) was isolated for the first time from a plant of the family Iridaceae.

Role of NADPH Oxidase-Mediated Generation of Reactive Oxygen Species in the Mechanism of Apoptosis Induced by Phenolic Acids in HePG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1183-1189
    • /
    • 2005
  • Although plant-derived phenolic acids have been reported to have anti-cancer activity, the exact mechanism is not completely understood. In this study, we investigated the role for reactive oxygen species (ROS) as a mediator of the apoptosis induced by caffeic acid (CA) and ferulic acid (FA), common phenolic acids in plants in HepG2 human hepatoma cells. CA and FA reduced cell viability, and induced apoptotic cell death in a dose-dependent manner. In addition, they evoked a dose-related elevation of intracellular ROS. Treatment with various inhibitors of NADPH oxidase (diphenylene iodonium, apocynin, neopterine) significantly blunted both the generation of ROS and the induction of apoptosis induced CA and FA. These results suggest that ROS generated through activation of NADPH oxidase may play an essential role in the apoptosis induced by CA and FA in HepG2 cells. These results further suggest that CA and FA may be valuable for the therapeutic management of human hepatomas.

NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구 (NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines)

  • 조홍재;김강미;송주동;박영철
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.778-782
    • /
    • 2007
  • Diphenyleneiodonium (DPI)는 NADPH oxidase 같은 flavoenzymes의 저해제로써 널리 사용되고 있다. 본 연구에서는 인간 대장암 세포주 HCT-116 (wild-type p53)와 HT-29 (p53 mutant) 및 인간 유방암 세포주인 MCF-7(wild-type p53)의 세포성장 과정에서의 DPI의 효과를 살펴보았다. DPI는 농도 및 시간 의존적으로 암세포주의성장을 막았으며 G2/M phase에서 cell cycle arrest를 일으켰다. Cell cycle arrest의 가장 높은 값은 DPI 처리후 12 시간에서 관찰할 수 있었다. 한편 DPI는 아폽토시스 그리고 cell cycle arres 에 관여하는 유전자 발현에 관여하는 p53의 표현을 크게 증가시켰으며, 이는 DPI처리 후 6시간 후 부터 관찰할 수 있었다. 그러나 NADPH oxidase의 조합을 억제하는 catechol 계인 apocynin은 p53의 발현을 유도하지 못하였다. 이것은 DPI에 의해 유도되는 p53의 발현증가는 NADPH oxidase활성의 저해와 관련되어 있지 않다는 것을 의미한다. 결론적으로 DPI는 HCT-116, HCT-15 및 MCF-7 암세포주에서 ROS에 비 의존적으로 wild-type p53 발현의 증가를 유도하며, 이 증가된 p53은 DPI에 의해 유도되는 성장 억제 및 C2/M phase에서의 cell cycle arrset과정의 조절기전에 관여한다는 것을 시사한다.

HepG2 간암세포에서 아라키돈산에 의한 세포사멸기전에 미치는 NADPH 산화효소의 역할 (Role of NADPH Oxidase in the Mechanism of Arachidonic Acid-induced Apoptosis in HepG2 Human Hepatoblastoma Cells)

  • 남정원;이용수
    • 약학회지
    • /
    • 제56권2호
    • /
    • pp.80-85
    • /
    • 2012
  • Previously, we have reported that arachidonic acid (AA) appears to be involved in the induction of apoptosis in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of the NADPH oxidase, a membranebound enzyme generating reactive oxygen species (ROS), in the mechanism of AA-induced apoptosis in HepG2 cells. Apoptotic cell death induced by AA was significantly suppressed by various inhibitors of the NADPH oxidase, diphenylene iodonium (DPI), apocynin (Apo) and neopterine (NP). In addition, these inhibitors of the NADPH oxidase completely blunted the AA-induced ROS elevation. Next, we investigated the implication of metabolic pathway of AA in these AA actions. Both apoptosis and ROS production induced by AA were not significantly altered by treatment with indomethacin (Indo) or nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively, suggesting that AA metabolites produced by COX or LOX may not have an essential role in the AA-induced apoptosis and ROS generation. Collectively, these results suggest that the NADPH oxidase may be a key player in the mechanism of AA-induced apoptosis in HepG2 cells. These results further suggest that NADPH oxidase may be a good target for the management of human hepatomas.

B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성에 미치는 NADPH 산화효소-유래 활성산소종의 역할 (Role of NADPH Oxidase-mediated Generation of Reactive Oxygen Species in the Apigenin-induced Melanogenesis in B16 Melanoma Cells)

  • 이용수
    • 약학회지
    • /
    • 제55권6호
    • /
    • pp.485-491
    • /
    • 2011
  • Previously, we have reported that apigenin, a natural flavonoid found in a variety of vegetables and fruits, stimulated melanogenesis through the activation of $K^+-Cl^-$-cotransport (KCC) in B16 melanoma cells. In this study we investigated the possible involvement of reactive oxygen species (ROS) in the mechanism of apigenin-induced melanogenesis in B16 cells. Apigenin elevated intracellular ROS level in a dose-dependent manner. Treatment with various inhibitors of NADPH oxidase, diphenylene iodonium (DPI), apocynin (Apo) and neopterine (NP) significantly inhibited both the generation of ROS and melanogenesis induced by apigenin. In addition these inhibitors profoundly inhibited apigenin-induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity. However, the apigenin-induced ROS generation was not significantly affected by treatment with a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that the ROS production may be a upstream regulator of the apigenin-induced KCC stimulation, and in turn, melanogenesis in the B16 cells. Taken together, these results suggest that the NADPH oxidase-mediated ROS production may play an important role in the apigenin-induced melanogenesis in B16 cells. These results further suggest that NADPH oxidase may be a good target for the management of hyperpigmentation disorders.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Glucose and Its Role in Generating Reactive Oxygen Species Required for Mouse Sperm Fertilizing Ability

  • Lin, S.C.;Chen, M.C.;Huang, A.J.;Salem, B.;Li, K.C.;Chou, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권6호
    • /
    • pp.748-756
    • /
    • 2000
  • Effects of xanthine (X), xanthine oxidase (XO), and catalase (C), $H_2O_2$, and carbohydrates on sperm capacitation, acrosome reaction, and fertilizing ability in vitro were examined. Glucose alone, but not fructose, supported the maximum rate of sperm capacitation and acrosome reaction. However, in the combination of X, XO, and C (XXOC) or $H_2O_2$, fructose alone also supported maximum capacitation, acrosome reaction, and fertilization. Either insufficient or excessive amounts of $H_2O_2$ decreased sperm capacitation and the acrosome reaction. In order to understand how glucose generates $H_2O_2$ or other reactive oxygen species in sperm cells, 6-aminonicotinamide, an inhibitor of the pentose-phosphate pathway (PPP), and apocynin, an inhibitor of NADPH oxidase, were added to sperm suspensions in glucose-containing medium. Results appeared that sperm capacitation, acrosome reaction, and fertilization were consequently inhibited by either one of these compounds. These inhibitory effects were nullified by addition of XXOC. These results support the hypothesis that glucose, in addition to being a substrate for glycolysis, facilitates sperm capacitation and the acrosome reaction by generating reactive oxygen species through G-6-P dehydrogenase and NADPH oxidase.

육군자탕(六君子湯)이 Glutamate에 의한 C6 신경교세포의 Apoptosis에 미치는 영향 (Effect of Yukgunja-tang on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 장원석;신용진;고석재;하예진;권영미;신선호
    • 대한한방내과학회지
    • /
    • 제31권3호
    • /
    • pp.586-599
    • /
    • 2010
  • Objective : The water extract of Yukgunja-tang(YGJT) has been traditionally used in treatment of qi deficiency and phlegm in Oriental medicine. However, little is known about the mechanism by which YGJT protects neuronal cells from injury damages. Therefore, this study was designed to evaluate the protective effects of YGJT on C6 glial cells by glutamate-induced cell death. Methods : The present study describes glutamate, which is known as an excitatory neurotransmitter, related with oxidative damages, and YGJT, which shows protective effects against glutamate-induced C6 glial cell death. One of the main mediators of glutamate-induced cytotoxicity was known on the generation of reactive oxygen species(ROS) via activation of NADPH oxidase (NOX). The protective effects of antioxidant(NAC) and NOX inhibitor(apocynin) on the glutamate-induced C6 glial cells were determined by a MTT reduction assay. Result : YGJT inhibited glutamate-induced ROS generation via inhibition of NOX expression on glutamate-stimulated C6 glial cells. Furthermore, YGJT attenuated glutamate-induced caspase activation. These results suggest that YGJT could be a new potential candidate against glutamate-induced oxidative stress and cell death. Conclusion : These findings indicate that in C6 glial cells, ROS plays an important role of glutamate-induced cell death and that YGJT may prevent cell death from glutamate-induced cell death by inhibiting the ROS generation.