• 제목/요약/키워드: apamin

검색결과 57건 처리시간 0.019초

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제10권3호
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin의 항암효과(抗癌效果)와 MAP-Kinase 신호전달체계에 관한 연구(硏究) (The Anti-Cancer Effect of Apamin in Bee-Venom on Melanoma cell line SK-MEL-2 and Inhibitory Effect on the MAP-Kinase Signal Pathway)

  • 김윤미;이재동;박동석
    • Journal of Acupuncture Research
    • /
    • 제18권4호
    • /
    • pp.101-115
    • /
    • 2001
  • Objective : To characterize the antitumorigenic potential of Apamin, one of the major components of bee venom, its effects on cell proliferation and the mitogen-activated protein kinase (MAPK) signal transduction pathway were characterized using the human melanoma cell line SK-MEL-2. Methods & Results : Cell counting analysis for cell death demonstrated that consistent with a previous results, SK-MEL-2 cells treated with $0.5-2.0{\mu}g/ml$ of Apamin showed no recognizable cytotoxic effect whereas detectable induction of cell death was identified at concentrations over $5.0{\mu}g/ml$. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin in a dose- and time-dependent manner. To explore whether Apamin-induced growth suppression is associated with the MAPK signaling pathway, phosphorylation of Erk, a function mediator of MAPK growth-stimulating signal, was examined Western blot assay using a phospho-specific Erkl/2 antibody. A significant increase of Erkl/2 phosphorylation level was observed in Apamin-treated cells compared with untreated control cells. Qantitative RT-PCR analysis revealed that Apamin inhibit expression of MAPK downstream genes such as c-Jun, c-Fos, and cyclin D1 but not expression of MAPK pathway component genes including Ha-Ras, c-Raf-1, MEK1, and Erk. Conclusion : It is strongly suggested that the antitumorigenic activity of Apamin might result in part from its inhibitory effect on the MAPK signaling pathway in human melanoma cells SK-MEL-2.

  • PDF

약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin, Melittin의 항암작용(抗癌作用) (The Study of Aati-cancer Effects of Bee Venom for Aqua-acupuncure)

  • 권도희;이재동;최도영
    • Journal of Acupuncture Research
    • /
    • 제18권1호
    • /
    • pp.129-145
    • /
    • 2001
  • Objectives : To characterize the antitumorigenic potential of three representative bee venom components, Melittin, Apamin, and Phospholipase A2, their effects on cell proliferation and apotosis of the human melanoma cell line SK-MEL-2 were analyzed using molecular biological approaches. Methodes & Results : To determine the doses of the drugs that do not induce cytotoxic damage to this cell line, cell viability was examined by MTT assay. While SK-MEL-2 cells treated with 0.5 - 2.0㎍/㎖ of each drug showed no recognizable cytotoxic effect, marked reductions of cell viability were detected at concentrations over 5.0㎍/㎖. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin and Phospholipase A2 in a dose-dependent manner. Consistent with this result, the cells were accumulated at the G1 phase of the cell cycle after treatment with Apamin and Phospholipase A2, whereas no detectable change in cell proliferation was identified by Melittin treatment. In addition, tryphan blue exclusion and flow cytometric analyses showed that all of these drugs can trigger apoptotic cell death of SK-MEL-2, suggesting that Melittin, Apamin, and Phospholipase A2 have antitumorigenic potential through the suppression of cell growth and/or induction of apoptosis. Qantitative RT-PCR analysis revealed that Apamin and Phospholipase A2 inhibit expression of growth-promoting genes such as c-Jun, c-Fos, and Cyciin D1. Furthermore, Phospholipase A2 induced tumor suppressors p53 and p21/Wafl. In addition, all three drugs were found to activate expression of a representative apoptosis-inducing gene Bax while expression of apoptosis-suppressing Bcl-2 and Bcl-XL genes was not changed. Taken together, this study strongly suggests that Metittin, Apamin, and Phosphalipase A2 may have antitumorigenic activities, which are associated with its growth-inhibiting and/or apoptosis-inducing potentials.

  • PDF

Blockade of Intrinsic Oscillatory Activity of Cerebellar Purkinje Cells by Apamin and Nickel

  • Seo, Wha-Sook;Strahlendorf, Jean-C.;Strahlendorf, Howard-K.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.477-484
    • /
    • 1997
  • Intracellular recordings of oscillatory firing (bursting activity) were obtained from Purkinje cells (PCs) in rat cerebellar slices. Apamin inhibited post-burst hyperpolarizations (PBHs) progressively and finally terminated oscillatory firing activity of PCs. Apamin did not affect the amplitude or duration of the after-hyperpolarization (AHP) between spikes within the burst. In the voltage clamp mode, apamin shifted the whole-cell, quasi-steady state I/V relationship in an inward direction and abolished the zero slope resistance (ZSR) region by blocking outward current. Nickel ($Ni^{2+}$) terminated oscillatory activity and also abolished the ZSR region. However, $Ni^{2+}$ did not have progressive blocking action on the post-burst hyperpolarization before it blocked oscillatory activity. $Ni^{2+}$ blocked an inward current at potentials positive to approximately -65 mV, which was responsible for the ZSR region and outward current at more negative potentials. These data indicated that oscillatory activity of PCs is sustained by a balance between a slow $Ni^{2+}$-sensitive inward current and an apamin-sensitive outward current in the region of ZSR of the whole-cell I/V curve.

  • PDF

봉약침액(蜂藥鍼液)이 세포활성(細胞活性)에 미치는 영향(影響) (The Effects of Bee Venom for Aqua-acupuncture on Cell viability)

  • 이승훈;이봉효;이경민;조현열;김영욱;방재선;서정철;한상원
    • Journal of Acupuncture Research
    • /
    • 제19권5호
    • /
    • pp.57-72
    • /
    • 2002
  • Objectives : This study was undertaken to determine the cytotoxic effects of crude bee venom which is widely used for aqua-acupuncture in oriental medical clinic. Methods : We compared the effects of crude bee venom, apamin, melittin and MCD peptide on cellviability by MTT asssay. Results : The obtained results are summarized as follows: 1. Bee venom, apamin, melittin and MCD peptide showed concentration--dependent cytotoxic effect in some human cell lines(human glioma cell line과 neuroblastorna, human mast cell line) for 24 and 48 Hour treatment. 2. Bee venom, apamin, melittin and MCD peptide showed dose-dependent cytotoxic effect in some human cell lines for 24 and 48 Hour treatment. 3. Bee venom treatment for 24 and 48 hour showed higher cytotoxic effects than apamin, melittin and MCD peptide. Conclusions : These results suggest that bee venom, apamin, melittin and MCD peptide have concentration- and dose- dependent cytotoxic effect in some human cell lines. But further study is needed for optimal concentration and dose.

  • PDF

Effects of Noradrenaline on the Spontaneous Contraction and Ionic Current in the Antral Circular Muscle of Guinea-pig Stomach

  • Jun, Jae-Yeoul;Lee, Sang-Jin;Kim, Sung-Joon;Suh, Jae-Yul;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제27권2호
    • /
    • pp.115-122
    • /
    • 1993
  • There is evidence that noradrenaline enhances spontaneous contractions dose-dependently in guinea-pig antral circular muscle. To investigate the mechanism of this excitatory action, slow waves and membrane currents were recorded using conventional microelectrode techniques in muscle strips and the whole cell patch clamp technique in isolated gastric myocytes. On recording slow waves, noradrenaline $(10^{-5}\;M)$ induced the hyperpolarization of the membrane potential, although the shape of the slow waves became tall and steep. Also, spike potentiaIs occurred at the peaks of slow waves. These changes were completely reversed by administration of phentolamine $(10^{-5}\;M),\;an\;{\alpha}-adrenoceptor$ blocker. Noradrenaline-induced hyperpolarization was blocked by apamin $(10^{-7}\;M)$, a blocker of a class of $Ca^{2+}\;-dependent\;K^+$ channels. To investigate the mechanisms for these effects, we performed whole cell patch clamp experiments. Norndrenaline increased voltage-dependent $Ca^{2+}$ currents in the whole range of test potentials. Noradrenaline also increased $Ca^{2+}\;-dependent\;K^+$\;currents, and this effects was abolished by apamin. These results suggest that the increase in amplitude and the generation of spike potentials on slow waves was caused by the activation of voltage-dependent $Ca^{2+}$ channel via adrenoceptors, and hyperpolarization of the membrane potential was mediated by activation of apamin-sensitive $Ca^{2+}\;-dependent\;K^+\;channels$.

  • PDF

채취 시기 및 지역에 따른 봉독의 성분 분석 (Components According to Different Collecting Time and Location in Bee Venom)

  • 한상미;윤형주;백하주
    • 한국응용곤충학회지
    • /
    • 제51권3호
    • /
    • pp.299-303
    • /
    • 2012
  • 서양종 꿀벌 독의 채집시기와 지역에 따른 봉독의 성분 변화 및 약리효과에 미치는 영향을 검토하였다. 채집시기는 5월부터 9월까지, 채집지역은 전국 35개 지역으로부터 채취한 봉독을 대상으로 2010년과 2011년 2년에 걸쳐 동일 지역에서 동일한 방법으로 봉독을 채취하였다. 채취한 봉독은 액체크로마토그래피를 통해 멜리틴과 아파민 그리고 포스포리파아제 A2의 성분 함량을 분석하였다. 그 결과 채집시기와 지역에 따른 성분에 유의한 차이는 확인되지 않았다(One way-ANOVA, Duncan's test (${\alpha}$=0.05)). 봉독의 성분은 채집시기와 지역에 관계없이 멜리틴 $55.2{\pm}2.07%$, 아파민 $2.57{\pm}0.103%$ 그리고 포스포리파아제 A2는 $12.51{\pm}0.37%$을 차지하였다. 이상의 결과로부터 봉독은 채취시기에 따른 주요 성분은 차이를 갖고 있지 않았으며, 이는 꿀벌의 먹이, 사육온도 등 외부 환경이 봉독 분비에 영향을 주지 않는 것으로 사료되었다.

Roles of $Ca^{2+}-Activated\;K^+$ Conductances on Spontaneous Firing Patterns of Isolated Rat Medial Vestibular Nucleus Neurons

  • Chun, Sang-Woo;Jun, Jae-Woo;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2000
  • To investigate the contributions of intrinsic membrane properties to the spontaneous activity of medial vestibular nucleus (MVN) neurons, we assessed the effects of blocking large and small calcium-activated potassium channels by means of patch clamp recordings. Almost all the MVN neurons recorded in neonatal $(P13{\sim}P17)$ rat were shown to have either a single deep after-hyperpolarization (AHP; type A cells), or an early fast and a delayed slow AHP (type B cells). Among the recorded MVN cells, immature action potential shapes were found. Immature type A cell showed single uniform AHP and immature B cell showed a lack of the early fast AHP, and the delayed AHP was separated from the repolarization phase of the spike by a period of isopotentiality. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In both type A and type B cells, CTX (20 nM) resulted in a significant increase in spike frequency but did not induce bursting activity. By contrast, apamin (300 nM) selectively abolished the delayed slow AHP and induced bursting activity in type B cells. Apamin had no effect on the spike frequency of type A cells. These data suggest that there are differential roles of apamin and CTX sensitive potassium conductances in spontaneous firing patterns of MVN neurons, and these conductances are important in regulating the intrinsic rhythmicity and excitability.

  • PDF

HPLC를 이용한 봉약침의 주요 성분에 관한 연구 (A Study on Major Components of Bee Venom Using HPLC)

  • 이진선;권기록;최호영
    • Journal of Acupuncture Research
    • /
    • 제17권4호
    • /
    • pp.120-129
    • /
    • 2000
  • This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K-BV II, 0.5mg/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg/ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV) using HPLC(High performance liquid chromatography). The results were summarized as follows : 1. HPLC method is useful for analysis of Bee Venom when solution rate is above 1:4000. 2. Analysis of Apamin using HPLC, the Retention time was 8.7min, and standard measurement curve was a function of y=4E+06x+21245. 3. Analysis of Melittin using HPLC, the Retention time was 29.0 min, and standard measurement curve was a function of y=4E+06x+23015. 4. Concentration of Melittin was about 297times than Apamin in K-BV I, and about 329times in K-BV II at same 1:500 solution rate, abnormally about 12 times in C-BV at 1:4000 solution rate. 5. Chinese Bee Venom using HPLC, the point from 5 to 7min(Retention time) showed a big extraordinary peak. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  • PDF

봉독요법(蜂毒療法)의 항염증(抗炎症) 기전(機轉) 연구(硏究)에 관(關)한 고찰(考察) (The Review on the Study related to Anti-inflammatory Mechanism of Bee Venom Therapy)

  • 최정식;박장우;오민석
    • 혜화의학회지
    • /
    • 제15권1호
    • /
    • pp.141-160
    • /
    • 2006
  • The obtained results are summarized as follows 1. New findings are reporting year by year as for the study related to Anti-inflammatory mechanism of Bee Venom therapy. 2. The Anti-inflammatory effect of Bee Venom therapy is achieved through counterirritation, stimulations to adrenal cortex, immuno-regulation, antioxidation, removal of free radicals, modulation of AGP gene induction. 3. The chief components of Bee Venom related to Anti-inflammatory effect are Melittin, MCD peptide, Apamin, Adolapin etc. 4. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. 5. Melittin blocks neutophil O2-production. 6. MCD peptide(Peptide 401) stimulates the mast cell secrets histamine, Anti-inflammatory effect caused by this is 'conterirritation'. 7. Melittin & Apamin have an anti-inflammatory effect by inducing cortisone secretion. 8. MCD peptide & Apamin increase immunologic fuction by stimulating hypophysis & adrenal cortex and have an anti-inflammatory effect by inhibiting synthesis of prostaglandin from arachidonic acid. 9. Adolapin have an anti-inflammatory effect by inhibiting COX. 10. Bee Venom have an anti-inflammatory effect by suppressing AGP($\alpha$-acid glycoprotein). 11. Bee Venom have an anti-inflammatory effect by inhibiting NO, iNOS, PLA2, COX-2, TNF-$\alpha$, IL-1, NF-${\kappa}B$, MAP kinase.

  • PDF