• Title/Summary/Keyword: antiviral protein

Search Result 135, Processing Time 0.027 seconds

Salvianolic Acid B Inhibits Hand-Foot-Mouth Disease Enterovirus 71 Replication through Enhancement of AKT Signaling Pathway

  • Kim, So-Hee;Lee, Jihye;Jung, Ye Lin;Hong, Areum;Nam, Sang-Jip;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • Hand, foot, and mouth disease (HFMD) is caused by enterovirus 71 (EV71) in infants and children under six years of age. HFMD is characterized by fever, mouth ulcers, and vesicular rashes on the palms and feet. EV71 also causes severe neurological manifestations, such as brainstem encephalitis and aseptic meningitis. Recently, frequent outbreaks of EV71 have occurred in the Asia-Pacific region, but currently, no effective antiviral drugs have been developed to treat the disease. In this study, we investigated the antiviral effect of salvianolic acid B (SalB) on EV71. SalB is a major component of the Salvia miltiorrhiza root and has been shown to be an effective treatment for subarachnoid hemorrhages and myocardial infarctions. HeLa cells were cultured in 12-well plates and treated with SalB (100 or 10 ㎍/ml) and 106 PFU/ml of EV71. SalB treatment (100 ㎍/ml) significantly decreased the cleavage of the eukaryotic eIF4G1 protein and reduced the expression of the EV71 capsid protein VP1. In addition, SalB treatment showed a dramatic decrease in viral infection, measured by immunofluorescence staining. The Akt signaling pathway, a key component of cell survival and proliferation, was significantly increased in EV71-infected HeLa cells treated with 100 ㎍/ml SalB. RT-PCR results showed that the mRNA for anti-apoptotic protein Bcl-2 and the cell cycle regulator Cyclin-D1 were significantly increased by SalB treatment. These results indicate that SalB activates Akt/PKB signaling and inhibits apoptosis in infected HeLa cells. Taken together, these results suggest that SalB could be used to develop a new therapeutic drug for EV71-induced HFMD.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

An Antiviral Mechanism Investigated with Ribavirin as an RNA Virus Mutagen for Foot-and-mouth Disease Virus

  • Gu, Chao-Jiang;Zheng, Cong-Yi;Zhang, Qian;Shi, Li-Li;Li, Yong;Qu, San-Fu
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • To prove whether error catastrophe /lethal mutagenesis is the primary antiviral mechanism of action of ribavirin against foot-and-mouth disease virus (FMDV). Ribavirin passage experiments were performed and supernatants of $Rp_1$ to $Rp_5$ were harvested. Morphological alterations as well as the levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected using the supernatants of $Rp_1$ to $Rp_5$ and control were measured by microscope, real-time RT-PCR, western-blotting and plaque assays, respectively. The mutation frequency was measured by sequencing the complete P1- and 3D-encoding region of FMDV after a single round of virus infection from ribavirin-treated or untreated FMDV-infected cells. Ribavirin treatment for FMDV caused dramatically inhibition of multiplication in cell cultures. The levels of viral RNAs, proteins, and infectious particles in the BHK-21 cells infected were more greatly reduced along with the passage from $Rp_1$ to $Rp_5$, moreover, nucleocapsid protein could not be detected and no recovery of infectious virus in the supernatant or detection of intracellular viral RNA was observed at the $Rp_5$-infected cells. A high mutation rate, giving rise to an 8-and 11-fold increase in mutagenesis and resulting in some amino acid substitutions, was found in viral RNA synthesized at a single round of virus infection in the presence of ribavirin of $1000\;{\mu}M$ and caused a 99.7% loss in viral infectivity in contrast with parallel untreated control virus. These results suggest that the antiviral molecular mechanism of ribavirin is based on the lethal mutagenesis/error catastrophe, that is, the ribavirin is not merely an antiviral reagent but also an effective mutagen.

Identification of Antiviral-related Genes Up-regulated in Response to Bombyx mori Nucleopolyhedrovirus (누에로부터 핵다각체병 바이러스 방어관련 유전자 정보 분석)

  • Goo, Tae-Won;Hong, Sun-Mee;Kim, Sung-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Yun, Eun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Silkworm larvae often suffer from viral infections causing heavy losses to the economy of silk industry. Insects exhibit both humoral and cellular immune responses that are effective against various pathohens like bacteria, fungi, protozoa, etc., but no insect immune responses is effective against viral infection. To obtain genes related to insect antiviral immunity from Bombyx mori, the cDNA library was constructed from B. mori nucleopolyhedrovirus (BmNPV)-infected B. mori. From the cDNA library, we selected 411 differentially expressed clones, and the 5' ends of the inserts were sequenced to generate ESTs. In this work, 135 unigenes were generated after the assembly of 411 differentially expressed clones ESTs. Of these 135 unigenes, we selected 109 antiviral response-related candidates except 26 clones that high similarity with genes derived from BmNPV. Among 109 unigenes, a total of 80% had significant matches to genes from other organisms in the database, wheres 20% of the unigenes had not matched in the database. Functional groups of these sequences with matches in database were constructed according to their putative biological function. Three largest categories were control of cellular oraganization (52%), metabolism (20%), and protein fate (10%). The genetic information reported in this study will provide more information about antiviral-related genes in silkworms.

Identification of new ligands for RNA pseudoknot by structure-based screening of chemical database

  • Park, So-Jung;Jeong, Seung-Hyun;Kim, Yang-Gyun;Park, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.254.2-254.2
    • /
    • 2003
  • For many viruses, -1 ribosomal frameshifting regulate protein synthesis using an RNA pseudoknot. The integrity of pseudoknot stability and structure is the important feature for efficient frameshifting. Thus, small molecules interacting with viral RNA pseudoknots would be potential antiviral agents targeting\ulcorner frameshifting system in viruses. X-ray structure of RNA pseudoknot complexed with biotin has been reported, in which biotin is bound at the interface between the pseudoknot's stacked helices. (omitted)

  • PDF

Antiviral Effects of the Culture Filtrate from Serratia marcescens Gsm01, against Cucumber mosaic virus (CMV)

  • Thapa, Shree Prasad;Lee, Hye-Jin;Park, Duck-Hwan;Kim, Sam-Kyu;Cho, Jun-Mo;Cho, Sae-Youll;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.369-375
    • /
    • 2009
  • The potential antiviral effects of the culture filtrates (CF) from Serratia marcescens strain Gsm01 against yellow strain of Cucumber mosaic virus (CMV-Y) were investigated. The culture filtrate of S. marcescens strain Gsm01 applied on Chenopodium amaranticolor showed high inhibitory activity, likewise no necrosis appeared when applied on the tobacco plants 2 days before CMV-Y inoculation. When plants were challenge inoculated with CMV-Y for eighteen days, the disease incidence in plants with culture filtrate of S. marcescens Gsm01 did not exceed 59%, whereas 100% of control plants were severely infected. The results of double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA), reverse transcriptase polymerase chain reaction (RT-PCR), dot blotting, and western blotting showed that culture filtrate treatment highly affected the accumulation of CMV-Y or its CP protein gene in the treated plant leaves. It was also observed that the culture filtrate had no RNase activity on genomic RNAs of CMV-Y, suggesting that culture filtrate may not contain ribosome inactivating proteins (RIPs) or proteins with RNase activity. These data shows that culture filtrate of S. marcescens strain Gsm01 seems to be a promising source of antiviral substance for the practical use.

OASL1 Traps Viral RNAs in Stress Granules to Promote Antiviral Responses

  • Kang, Ji-Seon;Hwang, Yune-Sahng;Kim, Lark Kyun;Lee, Sujung;Lee, Wook-Bin;Kim-Ha, Jeongsil;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.214-223
    • /
    • 2018
  • Oligoadenylate synthetase (OAS) protein family is the major interferon (IFN)-stimulated genes responsible for the activation of RNase L pathway upon viral infection. OAS-like (OASL) is also required for inhibition of viral growth in human cells, but the loss of one of its mouse homolog, OASL1, causes a severe defect in termination of type I interferon production. To further investigate the antiviral activity of OASL1, we examined its subcellular localization and regulatory roles in IFN production in the early and late stages of viral infection. We found OASL1, but not OASL2, formed stress granules trapping viral RNAs and promoted efficient RLR signaling in early stages of infection. Stress granule formation was dependent on RNA binding activity of OASL1. But in the late stages of infection, OASL1 interacted with IRF7 transcripts to inhibit translation resulting in down regulation of IFN production. These results implicate that OASL1 plays context dependent functions in the antiviral response for the clearance and resolution of viral infections.

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

Elucidation of the Inhibitory Mechanisms of Nipponoparmelia laevior Lichen Extract against Influenza A (H1N1) Virus through Proteomic Analyses

  • Cuong, Tran Van;Cho, Se-Young;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1155-1164
    • /
    • 2019
  • Lichens contain diverse bioactive secondary metabolites with various chemical and biological properties, which have been widely studied. However, details of the inhibitory mechanisms of their secondary metabolites against influenza A virus (IAV) have not been documented. Here, we investigated the antiviral effect of lichen extracts, obtained from South Korea, against IAV in MDCK cells. Of the lichens tested, Nipponoparmelia laevior (LC24) exhibited the most potent inhibitory effect against IAV infection. LC24 extract significantly increased cell viability, and reduced apoptosis in IAV-infected cells. The LC24 extract also markedly reduced (~ 3.2 log-fold) IAV mRNA expression after 48 h of infection. To understand the antiviral mechanism of LC24 against IAV, proteomic (UPLC-$HDMS^E$) analysis was performed to compare proteome modulation in IAV-infected (V) vs. mock (M) and LC24+IAV (LCV) vs. V cells. Based on Ingenuity Pathway Analysis (IPA), LC24 inhibited IAV infection by modulating several antiviral-related genes and proteins (HSPA4, HSPA5, HSPA8, ANXA1, ANXA2, $HIF-1{\alpha}$, AKT1, MX1, HNRNPH1, HNRNPDL, PDIA3, and VCP) via different signaling pathways, including $HIF-1{\alpha}$ signaling, unfolded protein response, and interferon signaling. These molecules were identified as the specific biomarkers for controlling IAV in vitro and further confirmation of their potential against IAV in vivo is required. Our findings provide a platform for further studies on the application of lichen extracts against IAV.