• 제목/요약/키워드: antisense suppression

검색결과 17건 처리시간 0.023초

Plasminogen Activator Inhibitor-1 Antisense Oligodeoxynucleotides Abrogate Mesangial Fibronectin Accumulation

  • Park, Je-Hyun;Seo, Ji-Yeon;Ha, Hun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.385-390
    • /
    • 2010
  • Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-${\beta}1$, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with $1\;{\mu}M$ phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-${\beta}1$. PAl-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-${\beta}1$ significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-${\beta}1$-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.

웅성불임 유전자의 발현억제를 이용한 임성회복 (Restoration of Fertility by Suppression of Male Sterility- Induced Gene Using an Antisense Construct)

  • 박영두;박범석;김현욱;진용문
    • 원예과학기술지
    • /
    • 제17권4호
    • /
    • pp.473-475
    • /
    • 1999
  • 본 연구는 antisense 유전자를 이용하여 웅성불임 식물체를 유기하는 웅성불임 유기 유전자의 발현을 억제함으로써 임성을 회복하기 위하여 실시하였다. 약특이 promoter(GBAN215-6 promoter)와 antisense 방향의 diphtheria toxin(DTx-A) 유전자로 제작된 pKDA215b로 담배(cv. petit Havana SR1)를 형질전환시키고 형질전환이 확인된 76개의 $R_0$ 세대를 자가수분하여 $R_1$ 세대를 획득하였다. $R_1$ 세대의 유전 분석후 antisene 유전자가 복수로 존재하는 5개의 $R_1$ 계통 (21505, 21507, 21511, 21522, 21525)을 선발하고 동형접합체를 획득하기 위해 자가수분을 하였다. 임성회복을 유도하고 회복친을 선발하기 위하여 antisense 유전자를 가진 $R_2$ 계통과 웅성불임 식물체를 교배하였다. 그 결과 꽃가루가 완전이 회복된 개체, 부분적으로 회복된 개체, 회복되지 않은 개체 등 3종류의 식물체를 획득하였으며 이들 식물체의 화분 이외의 표현형은 정상식물체와 같았고 그 기작 구명을 위해 선발하고 계속 연구가 진행되고 있다.

  • PDF

Characterization of a Tomato (Lycopersicon esculentum Mill.) Ripening-associated Membrane Protein (TRAMP) Gene Expression and Flavour Volatile Changes in TRAMP Transgenic Plants

  • Kim Seog-Hyung;Ji Hee-Chung;Lim Ki-Byung
    • Journal of Plant Biotechnology
    • /
    • 제7권2호
    • /
    • pp.87-95
    • /
    • 2005
  • The tomato ripening associated membrane protein (TRAMP) (Fray et al., 1994) is a member of the major intrinsic protein (MIP) family, defined as channels facilitating the passage of water and small solutes through membranes. During normal fruit ripening the TRAMP mRNA levels were increased whereas the expression levels of TRAMP in low ethylene ACO1-sense suppressed lines, Nr and rin fruits, were lower than at the breaker stage of wild type fruit. TRAMP mRNA is inhibited by $LaCl_3$, which is an inhibitor of $Ca^{2+}$-stimulated responses, treatment but drought condition did not affect TRAMP expression. The levels of TRAMP mRNA transcripts were substantially higher in the dark treated seedlings and fruits. These suggest that TRAMP function as a water channel may be doubted because of several reasons; no water content was changed during ripening in wild type, antisense and overexpression lines, TRAMP expression under light condition was lower than dark condition and TRAMP expression was not changed in drought condition. Co-suppression plant, 3588 was one of sense suppression lines, which contain CaMV 35S promoter and sense pNY507 cDNA, produced small antisense RNA, approximately 21-25 nucleotides in length, mediated post-transcriptional gene silencing. Therefore, TRAMP expression was inhibited by small antisense and multiple copies might induce gene silencing without any production of double strand RNA. Total seven selected volatile productions, isobutylthiazole, 6-methyl-5-hepten-2-one, hexanal, hexenal methylbutanal, hexenol, and methylbutanol, were highly reduced in sense line whereas total volatile production was increased in TRAMP antisense line. These results suggested TRAMP might change volatile related compounds.

Suppression of ASKβ(AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development

  • Dong, Xiangshu;Nou, Ill-Sup;Yi, Hankuil;Hur, Yoonkang
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.506-517
    • /
    • 2015
  • Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of $ASK{\beta}$ (AtSK32), $ASK{\beta}$ antisense transgenic plants were generated, revealing the effects of $ASK{\beta}$ down-regulation in Arabidopsis. Suppression of $ASK{\beta}$ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of $ASK{\beta}$ and its co-expressed genes. In the aborted pollen of $ASK{\beta}$ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate $ASK{\beta}$ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that $ASK{\beta}$ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Effects of Multiple-target Anti-microRNA Antisense Oligodeoxyribonucleotides on Proliferation and Migration of Gastric Cancer Cells

  • Xu, Ling;Dai, Wei-Qi;Xu, Xuan-Fu;Wang, Fan;He, Lei;Guo, Chuan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3203-3207
    • /
    • 2012
  • Backgrounds: To investigate the inhibiting effects of multi-target anti-microRNA antisense oligonucleotide (MTg-AMOs) on proliferation and migration of human gastric cancer cells. Methods: Single anti-microRNA antisense oligonucleotides (AMOs) and MTg-AMOs for miR-221, 21, and 106a were designed and transfected into SGC7901, a gastric cancer cell line, to target the activity of these miRNAs. Their expression was analyzed using stem-loop RT-PCR and effects of MTg-AMOs on human gastric cancer cells were determined using the following two assay methods: CCK8 for cell proliferation and transwells for migration. Results: In the CCK-8 cell proliferation assay, $0.6{\mu}mol/L$ was selected as the preferred concentration of MTg-AMOs and incubation time was 72 hours. Under these experimental conditions, MTg-AMOs demonstrated better suppression of the expression of miR-221, miR-106a, miR-21 in gastric cancer cells than that of single AMOs (P = 0.014, 0.024; 0.038, respectively). Migration activity was also clearly decreased as compared to those in randomized and blank control groups ($28{\pm}4$ Vs $54{\pm}3$, P <0.01; $28{\pm}4$ Vs $59{\pm}4$, P < 0.01). Conclusions: MTg-AMOs can specifically inhibit the expression of multiple miRNAs, and effectively antagonize proliferation and migration of gastric cancer cells promoted by oncomirs.

Suppression of ADAM 10-induced Delta-1 Shedding Inhibits Cell Proliferation During the Chondro-Inhibitory Action of TGF-β3

  • Jin, Eun-Jung;Choi, Young-Ae;Sonn, Jong-Kyung;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.139-147
    • /
    • 2007
  • Although transforming growth factors (TGFs) are implicated in the process of endochondral ossification, which is initiated by the differentiation of mesenchymal cells into chondrocytes, it is not clear how $TGF-{\beta}3$ regulates the chondrogenic differentiation of limb bud mesenchymal cells. Here, differential display polymerase chain reaction (DD-PCR) screening and RT-PCR analysis revealed that transcripts of A Disintegrin And Metalloprotease 10 (ADAM 10) decreased during the chondro-inhibitory action of $TGF-{\beta}3$ on cultured chick leg bud mesenchymal cells. Electroporation of ADAM 10 morpholino antisense oligonucleotides inhibited the ectodomain shedding of delta-1, and cell proliferation and subsequent precartilage condensation, in a manner similar to that caused by $TGF-{\beta}3$. The suppression of mesenchymal cell proliferation induced by $TGF-{\beta}3$ and ADAM 10 morpholino antisense oligonucleotides was reversed by activation of ADAM 10 with phorbol 12-myristate 13-acetate (PMA) or knockdown of Notch-1 with siRNA. Collectively, these data indicate that, in cultured chick leg bud mesenchyme cells, $TGF-{\beta}3$ downregulates ADAM 10 and inhibits cell proliferation and subsequent precartilage condensation by inhibiting the ectodomain shedding of delta-1, and that this results in the activation of Notch signaling.

p53에 의한 HIV-1 Tat 활성억제와 ds-RNA-dependent Protein Kinase (PKR) 관련 가능성 연구 (p53-mediated HIV-1 Tat Suppression is Likely to be Associated with duble-stranded RNA-dependent Protein Kinase, PKR)

  • 김정환;변희선;배용수
    • 대한바이러스학회지
    • /
    • 제29권4호
    • /
    • pp.235-245
    • /
    • 1999
  • HIV-1 Tat, a strong transactivator, is essential for the HIV-1 replication and AIDS progression. The Tat function is markedly inhibited by human p53 anti-oncogene. However, the detail mechanism has not yet been clearly revealed. In our previous report, we have addressed that p53 is unlikely to interact directly with HIV-1 Tat. In the consecutive experiments, Tat-phosphorylation was found to increase in proportional to the amounts of transfected p53. This work was initiated to identify the signaling factor that is involved in the p53-mediated Tat suppression. Several protein kinases were tested for the phosphorylation of Tat, and we found that PKR is likely to be involved in the p53-mediated Tat suppression. PKR was co-immunoprecipitated by anti-Tat antibody in the Tat-expressing Jurkat cell lysates only when the cells were transfected by p53, indicating that PKR-Tat interaction depends on the p53 activity. The interaction seems to result in PKR-mediated Tat-phosphorylation. Tat function was not blocked by p53 when co-transfected trasiently with antisense-PKR. We have generated PKR-knock out Jurkat cell clone. The PKR defective Jurkat cells didn't show the p53-mediated Tat suppression. These data indicate that p53-mediated Tat suppression is strongly associated with PKR. PKR-mediated Tat phosphorylation experiments are now under investigation by kinase assay and co-immunoprecipitation in the presence or absence of p53.

  • PDF

The Ascidian Numb Gene Involves in the Formation of Neural Tissues

  • Ahn, Hong Ryul;Kim, Gil Jung
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권4호
    • /
    • pp.371-378
    • /
    • 2012
  • Notch signaling plays fundamental roles in various animal development. It has been suggested that Hr-Notch, a Notch homologue in the ascidian Halocynthia roretzi, is involved in the formation of peripheral neurons by suppressing the neural fates and promoting the epidermal differentiation. However, roles of Notch signaling remain controversial in the formation of nervous system in ascidian embryos. To precisely investigate functions of Notch signaling, we have isolated and characterized Hr-Numb, a Numb homologue which is a negative regulator of Notch signaling, in H. roretzi. Maternal expression of Hr-Numb mRNAs was detected in egg cytoplasm and the transcripts were inherited by the animal blastomeres. Its zygotic expression became evident by the early neurula stage and the transcripts were detected in dorsal neural precursor cells. Suppression of Hr-Numb function by an antisense morpholino oligonucleotide resulted in larvae with defect in brain vesicle and palps formation. Similar results have been obtained by overexpression of the constitutively activated Hr-Notch forms. Therefore, these results suggest that Hr-Numb is involved in Notch signaling during ascidian embryogenesis.

Crop improvement the biotechnology option

  • Kumar, Prakash P.
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 춘계학술대회 및 국제심포지움 초록집
    • /
    • pp.6-9
    • /
    • 2005
  • Plant biotechnology involving genetic modification has been rather controversial. However, the major issues related to safety are being addressed by continued improvements in technology. Some of the related facts will be highlighted to set the tone for a scientific discussion on the possibilities of using the technology for crop improvement. Our main research interest is to understand the molecular regulation of shoot bud regeneration in plant tissue culture, which is essential for crop improvement by biotechnology. We have isolated and characterized some genes that are associated with adventitious shoot regeneration. These include a MADS-box cDNA (PkMADS1) from paulownia kawakamii, which regulates vegetative shoot development and in vitro shoot regeneration from leaf explants. Another gene we have characterized from petunia codesfor a cytokinin binding protein (PETCBP). Preliminary functional analysis of this gene indicated that this also affects adventitious shoot bud initiation. Also, the antisense suppression of this gene in petunia causedexcessive branching. Results from our work and selected other publications will be used to highlight the possibilities of manipulation of such genes to improve crop species.

  • PDF