• Title/Summary/Keyword: antiplatelet aggregation

Search Result 107, Processing Time 0.023 seconds

In Vitro Effect of Aspalatone on Platelet Aggregation and Thromboxane Production in Human Platelet Rich Plasma

  • Suh, Dae-Yeon;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.122-126
    • /
    • 1996
  • In vitro inhibitory effect of aspalatone ((3-(2-methyl-4-pyronyl)]-2-acetyloxybenzoate) on collagen-, ADP-, and epinephrine-induced platelet aggregation in human platelet rich plasma (PRP) was compared with the effects of reference drugs (acetylsalicylic acid, cilostazol and ticlopidine). Aspalatone inhibited time and dose dependently human platelet aggregation induced by collagen; relative potency was in the order of cilostazol>acetylsalicylic acid>aspalatone>ticlopidine. Aspalatone, like acetylsalicylic acid, potently inhibited only the secondary phase of ADP-and epinephrine-induced aggregation. Thromboxane $B^2$ production evoked by collagen in human PRP was inhibited significantly and concentration-dependently by aspalatone and acetylsalicylic acid. These results were in agreement with the earlier studies in which the antiplatelet action of aspalatone was indicated to be due to the inhibition of platelet cyclooxygenase activity (Han et al., Arzneim. Forsch./Drug Res. 44(II), 1122, 1994; Suh and Han, Yakhak Hoeji 39, 565, 1995). In addition, the inhibitory activity of aspalatone on the platelet aggregation appears to be inversely related to the rate of nonspecific deacetylation of the drug in plasma.

  • PDF

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

Cordycepin (3'-deoxyadenosine) Has an Anti-platelet Effect by Regulating the cGMP-Associated Pathway of Human Platelet Activation

  • Cho, Hyun-Jeong;Rhee, Man-Hee;Cho, Jae-Youl;Kim, Hyeong-Soo;Ok, Woo-Jeong;Kang, Hee-Jin;Park, Hwa-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine), which comes from Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is used in the treatment of various diseases such as cancer and chronic inflammation. We recently reported that cordycepin has a novel antiplatelet effect through the down regulation of $[Ca^{2+}]_{i}$ and the elevation of cGMP/cAMP production. In this study, we further investigated the effect of cordycepin on collagen-induced platelet aggregation in the presence of cGMP-dependent protein kinase (PKG)- or cAMP-dependent protein kinase (PKA)-inhibitor. PKG inhibitor Rp-8-pCPT-cGMPS potentiated the collagen-induced platelet aggregation, but PKA inhibitor Rp-8-Br-cAMPS did not. However, both Rp-8-pCPT-cGMPS and Rp-8-Br-cAMPS reduced inhibition by cordycepin of collagen-induced platelet aggregation. Moreover, cordycepin inhibited $Ca^{2+}-dependent$ phosphorylation of both 47 kDa- and 20 kDa-protein in the presence of both PKG inhibitor and PKA inhibitor. Taken altogether, these results suggest that the inhibitory effect of cordycepin on collagen-induced platelet aggregation is associated with cGMP/PKG- and cAMP/PKA-pathways, and thus cordycepin may be an efficacious intervention against platelet aggregation-mediated thrombotic disease.

The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

  • Son, Young-Min;Jeong, Da-Hye;Park, Hwa-Jin;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.96-102
    • /
    • 2017
  • Background: Korean ginseng, Panax ginseng Meyer, has been used as a traditional oriental medicine to treat illness and promote health for several thousand years. Ginsenosides are the main constituents for the pharmacological effects of P. ginseng. Since several ginsenosides, including ginsenoside (G)-Rg3 and G-Rp1, have reported antiplatelet activity, here we investigate the ability of G-Rp4 to modulate adenosine diphosphate (ADP)-induced platelet aggregation. The ginsenoside Rp4, a similar chemical structure of G-Rp1, was prepared from G-Rg1 by chemical modification. Methods: To examine the effects of G-Rp4 on platelet activation, we performed several experiments, including antiplatelet ability, the modulation of intracellular calcium concentration, and P-selectin expression. In addition, we examined the activation of integrin ${\alpha}IIb{\beta}_3$ and the phosphorylation of signaling molecules using fibrinogen binding assay and immunoblotting in rat washed platelets. Results: G-Rp4 inhibited ADP-induced platelet aggregation in a dose-dependent manner. We found that G-Rp4 decreased calcium mobilization and P-selectin expression in ADP-activated platelets. Moreover, fibrinogen binding to integrin ${\alpha}IIb{\beta}_3$ by ADP was attenuated in G-Rp4-treated platelets. G-Rp4 significantly attenuated phosphorylation of extracellular signal-regulated protein kinases 1 and 2, p38, and c-Jun N-terminal kinase, as well as protein kinase B, phosphatidylinositol 3-kinase, and phospholipase C-${\gamma}$ phosphorylations. Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

Anticoagulant Properties of Compounds Derived from Fennel (Foeniculum vulgare Gaertner) Fruits

  • Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.763-767
    • /
    • 2006
  • The anticoagulant properties of compounds derived from fennel (Foeniculum vulgare Gaertner) fruits were evaluated using a platelet aggregometer and compared with aspirin. The active constituents of fennel fruits were isolated and identified as (+)-fenchone and extragole by various spectral analysis techniques. With regard to the 50% inhibitory concentration ($IC_{50}$), (+)-fenchone effectively inhibited platelet aggregation induced by treatment with collagen ($IC_{50}$, $3.9\;{\mu}M$) and arachidonic acid (AA) ($IC_{50}$, $27.1\;{\mu}M$), and estragole inhibited collagen-induced platelet aggregation ($IC_{50}$, $4.7\;{\mu}M$). By way of comparison, (+)-fenchone and estragole proved to be significantly more potent than aspirin at inhibiting platelet aggregation induced by collagen. The inhibitory activity of (+)-fenchone toward platelet aggregation induced by AA was 1.3 times stronger than that of aspirin. These results indicate that (+)- fenchone and estragole may be useful as lead compounds for inhibiting platelet aggregation induced by arachidonic acid and collagen.

Benzylamides from Salvadora persica

  • Khalil, Ashraf Taha
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.952-956
    • /
    • 2006
  • A phytochemical investigation of stems from Salvadora persica resulted in the first isolation of four benzylamides from a natural source. The isolated compounds were identified as butanediamide, $N^{1},\;N^{4}$-bis(phenylmethyl)-2(S)-hydroxy-butanediamide (1), N-benzyl-2-phenylacetamide (2), N-benzylbenzamide (3) and benzylurea (4). The structure elucidation was accomplished using spectroscopic methods, especially 2D NMR and HREIMS. Compound 2 revealed a significant inhibitory effect on human collagen-induced platelet aggregation, and a moderate antibacterial activity against Escherichia coli.

Antithrombotic and Antiplatelet Effects of Cordyceps militaris

  • Choi, Eunhyun;Oh, Junsang;Sung, Gi-Ho
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.228-232
    • /
    • 2020
  • Cordyceps is a genus of ascomycete fungi and is well known as one of the important medical fungi in Chinese, Korea, and other Asian countries, because of its various beneficial effects on human health. The pharmacological activities of Cordyceps extract are mainly focused on anti-cancer, anti-metastatic, and immune modulating effects. In the present study, we investigated whether the antiplatelet effect of ethanol extract of cultured Cordyceps militaris (CMEE) with FeCl3-induced arterial thrombosis model. We observed that CMEE exhibited a significant inhibitory effect against ADP and collagen-induced platelet aggregation. However, there were no significant differences in prothrombin time (PT) and activated partial thromboplastin time (aPTT). These results suggest that antithrombotic activity of CMEE is related to antiplatelet effect rather than anticoagulation effect, and CMEE may be a positive effect on improving blood circulation against vessel injury and occlusion.

Inhibitory Effect of Scopoletin on U46619-induced Platelet Aggregation through Regulation of Ca2+ Mobilization

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Platelet aggregation is essential for hemostatic process in case of blood vessels damages. However, excessive platelet aggregation can cause cardiovascular disorders including atherosclerosis, thrombosis and myocardial infarction. Scopoletin is usually found in the roots of genus Scopolia or Artemisia, and is known to have anticoagulant and anti-malarial effects. This study investigated the effect of scopoletin on human platelet aggregation induced by U46619, an analogue of thromboxane $A_2(TXA_2)$. Scopoletin had anti-platelet effects by down-regulating $TXA_2$ and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), the aggregation-inducing molecules generated in activated platelets. On the other hand, scopoletin increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are known to be intracellular $Ca^{2+}$ antagonists. This resulted in inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in U46619-induced human platelet aggregation. In addition, scopoletin inhibited the release of adenosine trisphosphate (ATP) in dose-dependent manner. This result means that the aggregation amplification activity through the granule secretion in platelets was suppressed by scopoletin. Therefore, we demonstrated that scopoletin has a potent antiplatelet effect and is highly likely to prevent platelet-derived vascular disease.

Anti-aggregation Effect of Artemether Through Regulation of PI3K/Akt and MAPK in U46619-induced Platelets (U46619-유도의 혈소판에서 PI3K/Akt 및 MAPK 조절을 통한 Artemether의 응집억제효과)

  • Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.64-69
    • /
    • 2022
  • When blood vessels are damaged, a rapid hemostatic response should occur in order to lower blood loss and keep normal circulation, and platelet activation and aggregation are essential. Nevertheless, abnormal or excessive platelet aggregation can be a reason of cardiovascular diseases including thrombosis, atherosclerosis, and stroke. Therefore, the screening for a substance which can regulate platelet activation and suppress aggregation reaction is very important for treatment and prevention of cardiovascular diseases. Artemether is a methyl ether derivative of artemisinin, which is isolated from the antimalarial plant Artemisia annua, but research on platelet aggregation or its mechanisms is still insufficient. This study identified the effects of artemether on U46619-induced human platelet aggregation and their granule secretion (ATP and serotonin release). In addition, the effects of artemether on the phosphorylation of PI3K/Akt or MAPK, which are related to signal transduction in platelet aggregation, were studied. As the results, artemether significantly lowered PI3K/Akt and MAPK phosphorylation, which inhibited platelet aggregation through granule secretion (ATP and serotonin release) dose-dependently. Therefore, we suggest that artemether is an antiplatelet substance that regulates PI3K/Akt and MAPK pathway and is of value as a therapeutic and preventive agent for platelet-derived cardiovascular diseases.

The inhibitory effects of glabridin on human platelet aggregation and thrombus formation

  • Sang-Nam Park;Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.455-461
    • /
    • 2023
  • Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and glabridin is a major chemical compound that is found in the root extract of Glycyrrhiza glabra. Glabridin is a natural compound known to have antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. In this study, we investigated if glabridin inhibited platelet aggregation and thrombus formation. We observed that glabridin inhibited collagen-induced platelet aggregation and suppressed signal transduction molecules such as phosphatidylinositol-3 kinase (PI3K), Akt, glycogen synthase kinase-3α/β (GSK-3α/β), SYK, cytosolic phospholipase A2, and p38 expression. In addition, glabridin suppressed thromboxane A2 generation and thrombin-induced clot retraction. Taken together, glabridin showed strong antiplatelet effects and may be used to block thrombosis- and platelet-mediated cardiovascular diseases.