• Title/Summary/Keyword: antiplatelet aggregation

Search Result 107, Processing Time 0.021 seconds

Antiplatelet Aggregation Potencies of some Allium spp. Grown in Indonesia

  • Wijaya, C. Hanny;Muchtadi, Deddy;Lalel, Herianus J.;Zakaria, Fransiska;Koswara, Sutrisno
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.37-42
    • /
    • 1996
  • Several species and varieties of Allium spp. grown in Indonesia were screened for their in vitro antiplatelet aggregation activities. The extracts were also analyzed by GC for their volatile sulfur-containing compounds, and measured for their Volatile Reducing Substances (VRS) contents. Antiplatelet aggregation potencies of Allium spp. were varied among the species and varieties studied. Garlic extracts showed the greatest ability to inhibit platelet aggregation followed by extract of shallot, chive, yellow onion, and green onion. The 'Jawi' and 'local Padang' variety of garlic showed high activities with $IC_{50}$ values of 9.1 and $9.8\;{\mu}g/ml$, respectively. The local Kupang variety of shallot showed the highest antiplatelet activity among the shallot varieties evaluated, with an $IC_{50}$ value of $111\;{\mu}g/ml$. Antiplatelet aggregation activities of Allium extracts showed a positive correlation with the level of volatile compounds.

  • PDF

Effects of Tetrandrine and Fangchinoline on Human Platelet Aggregation, Thromboxane B$_2$ Formation and Blood coagulation.

  • Zhang, Yong-He;Kim, Hack-Seang;Yun, Yeo-Pyo;Lee, Hyung-Kyu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.177-177
    • /
    • 1998
  • In the previous report, tetrandrine (TET) and fangchinoline (FAN) showed antithrombotic and antiplatelet aggregation activities. The present study was undertaken to investigate the effects of tetrandrine and fangchinoline on human platelet aggregation, formation of thromboxane B$_2$ and coagulation of platelet poor plasma. TET and FAN inhibited platelet activating factor (PAF) induced human platelet aggregation, but didn't inhibit the specific binding of PAF to its receptor. Meanwhile, TET and FAN also inhibited PAF, thrombin and arachidonic acid induced thromboxane B$_2$ formation in human washed platelets. In addition, neither TET nor FAN showed any anticoagulation activities in the measurement of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using human platelet poor plasma. These results suggest that antithrombotic effects of TET and FAN in mice may be mainly related to the antiplatelet aggregation activities, and the antiplatelet aggregation effects may be related to the intracellular messenger system such as TXA$_2$ formation etc., but not to the binding of PAF to PAF-receptor on the platelet membrane directly.

  • PDF

Antiplatelet fraction from Ulmi cortex and its active components (유백피의 항혈전 활성 분획 및 유효성분에 관한 연구)

  • Kim, Dong-Seon;Yang, Won-Kyung;Sung, Yoon-Young;Lim, Sun Mi;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.39-44
    • /
    • 2013
  • Objectives : The purpose of this study was to identify active fraction and components from antiplatelet Ulmi cortex extract. Methods : The 70% ethanol extract of Ulmi cortex was subjected to column chromatography over D101 resin and eluted with an 20% (W1), 30% (W2), 40% (W3), 50%(W4), 70% (W5), and 100% ethanol (W6) to yield 6 fractions. W6 was further fractioned and its active components were purified using semi-preparative HPLC. The isolated compounds were identified by MS and NMR, and their contents were simultaneously analyzed using HPLC/UV. Antiplatelet aggregation activities of the fractions and the compounds were evaluated using rat platelet-rich plasma in presence of collagen ($5{\mu}g/ml$), arachidonic acid (0.05 U/ml), or thrombin ($100{\mu}M$). Results : Among six fractions, W3 prominently inhibited platelet aggregation. At the concentration of $200{\mu}g/ml$, W3 strongly inhibited arachidonic acid- and collagen-induced platelet aggregations by 78.2% and 65.9%, respectivley, and weakly inhibited thrombin-inducded platelet aggregation by 32.6%. Catechin, epicatehin, and catechin-7-O-${\beta}$-D-glucopyranoside were isolated from W3 and their contents were revealed to be 15.1%, 0.87%, and 0.32%. Catechin and epicatechin at the concentrations of $100{\mu}M$ strongly inhibited collagen-induced platelet aggregation by 79.9% and 86.6%, respectively, but weakly inhibited arachidonic acid- and thrombin-induced platelet aggregations. Conclusions : A main active principle of anitplatelet Ulmi Cortex extract is W3 fraction, of which main active component is catechin considering its antiplatelet activity and content.

Antiplatelet Activity of Thujopsis dolabrata var. hondai-Derived Component Against Platelet Aggregation

  • SON DONG JU;PARK YOUNG HYUN;KIM YOUNG MI;CHUNG NAM HYUN;LEE HOI SEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.425-427
    • /
    • 2005
  • The steam distillate obtained from Thujopsis dolabrata var. hondai sawdust was fractionated by centrifugal thin-film evaporation, and the fractions were then investigated for antiplatelet activity using washed rabbit platelets. The biologically active constituent of T. dolabrata var. hondai sawdust was isolated by silica gel column and HPLC chromatographies and characterized as carvacrol by various spectral analyses. Carvacrol inhibited platelet aggregation induced by collagen, arachidonic acid, and platelet activating factor with IC$_{50}$ values of 12.6, 2.5, and 385.3 $\mu$M, respectively. However, carvacrol had no effect on thrombin, calcium ionophore A23l87, or phorbol l2-myristate l3-acetate induced platelet aggregation. Carvacrol was a much more potent inhibitor, as antiplatelet agents, compared with aspirin. These results suggest that carvacrol isolated from T. dolabrata var. hondai sawdust may be useful as a lead compound for inhibiting arachidonic acid-induced platelet aggregation.

Effects of Danggi-Jakyak-San on Antiplatelet and Antihemolysis Activity of in Human blood

  • Sa, Eun-Ho;Son, Soo-Gon;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.460-466
    • /
    • 2006
  • We wondered whether the mechanisms of antiplatelet aggregation of DJS-WE were through multiple pathways. Danggijakyak-san(DJS) consisting of 6 herbes of Paeoniae Radix, Poria Cocos, Angelicae Sinensis Radix, Cnidii Rhizoma, Atractylodis Macrocephalae Rhizoma and Alismatis Rhizoma, is a crude mixture of a commonly used Korean herbal medicine. The water extract (DJS-WE) of DJS has been known to have an anti-platelet aggregation activity. We have reported that DJS-WE inhibited ADP-induced aggregation as well as arachidonic acid-induced aggregation of human platelet. Clinical studies on the cardiovascular effects of DJS-WE have been done in Korea. The DJS has been used as a remedy for gastrointestinal disorders (abdominal pain, dysentery), headache, amenorrhea, and postpartum hemorrhage. It has also been claimed to have a remarkable central stimulant effect, a transient hypertensive effect, and positive inotropic and chronotropic effects. In this paper, we evaluated the possible mechanisms of the antiplatelet activity of DJS-WE using human platelets. On the other hand, the role of DJS-ethanol extract on the inhibition of platelet aggregation and hemolytic effect have not yet been investigated in detail. We also used the method of activated partial thromboplastin times (APTT) for the first time to study the inhibition on platelet aggregation activity of DJS-ethanol extract. The effect of DJS-WE on hemolysis was also investigated. DJS-WE showed a high hemolysis ability on human blood.

Dental treatment of the patient with antiplatelet agent (항혈소판제를 투여받는 환자의 치과치료)

  • Park, Hongju
    • The Journal of the Korean dental association
    • /
    • v.57 no.10
    • /
    • pp.606-612
    • /
    • 2019
  • Antiplatelet agent is administered to the patients who have ischemic heart disease, transient cerebral infarction, as well as hypertension, etc. Antiplatelet agent prevents thromboembolism by inhibition of platelet aggregation by various mechanism. Due to that reason, patient who administered antiplatelet agent has bleeding tendency. Surgeon does not want to make a complication by bleeding during and after operation, and want to stop taking antiplatelet agent. However, It is very dangerous for the patient to stop antiplatelet agent. Local bleeding as a complication after operation is considered minor one, whereas thromboembolism is life threatening serious complication. Most dental intervention can be performed without withdrawal of antiplatelet agent. Dental intervention should be limited area, and surgeon should do active bleeding control.

  • PDF

Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components

  • Ryu, Ri;Jung, Un Ju;Kim, Hye-Jin;Lee, Wonhwa;Bae, Jong-Sup;Park, Yong Bok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • Artemisia princeps Pampanini (AP) has been used as a traditional medicine in Korea, China and Japan and reported to exhibit various beneficial biological effects including anti-inflammatory, antioxidant, anti-atherogenic and lipid lowering activities; however, its antiplatelet and anticoagulant properties have not been studied. In the present study, we evaluated the effects of an ethanol extract of Artemisia princeps Pampanini (EAP) and its major flavonoids, eupatilin and jaceosidin, on platelet aggregation and coagulation. To determine the antiplatelet activity, arachidonic acid (AA)-, collagen- and ADP (adenosine diphosphate)-induced platelet aggregation were examined along with serotonin and thromboxane A2 ($TXA_2$) generation in vitro. The anticoagulant activity was determined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in vitro. The data showed that EAP and its major flavonoids, eupatilin and jaceosidin, significantly reduced AA-induced platelet aggregation and the generation of serotonin and $TXA_2$, although no significant change in platelet aggregation induced by collagen and ADP was observed. Moreover, EAP significantly prolonged the PT and aPTT. The PT and/or aPTT were significantly increased in the presence of eupatilin and jaceosidin. Thus, these results suggest that EAP may have the potential to prevent or improve thrombosis by inhibiting platelet activation and blood coagulation.

대두가수분해물로부터 새로운 항혈전성 펩타이드, SSGE와 DEE의 분리

  • Lee, Gyeong-Ae;Kim, Seung-Ho
    • Bulletin of Food Technology
    • /
    • v.17 no.3
    • /
    • pp.69-74
    • /
    • 2004
  • A soy protein hydrolysate was found to inhibit rat platelet aggregation induced by ADP, an aggregating agent. To find out its principal antiplatelet peptide(s), the soy protein hydrolysate was separated successively by gel filtration chromatography, revere-phase HPLC, and cation exchange HPLC. During the course of separation, we observed that most fractions had antiplatelet effects, which suggests that most peptides have some degree of antiplatelet effect. Following the inhibitory fractions, we purified and identified two new peptides, SSGE and DEE, by LC-electrospray ionization MS and peptide equencing. Both peptides were highly hydrophilic. The concentrations to obtain 50% inhibition ($IC_50$) of the aggregation intensity were approximately $\458muM$ and $\485muM$, respectively, for SSGE and DEE.

  • PDF

Anticardiovascular Diseases Effects of Fermented Garlic and Fermented Chitosan

  • Kim, Hyun-Kyoung;Lee, Jeong-Hun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.109-115
    • /
    • 2018
  • Garlic is a medicinal plant used throughout the world for its anti-inflammatory, antioxidant, and antiplatelet activities. Chitosan is a natural polysaccharide obtained from chitin, and derivatives of chitosan have been shown to inhibit platelet aggregation and adhesion. We hypothesized that fermented preparations of these products may possess stronger antiplatelet effects than the non-fermented forms owing to the increased bioavailability of the bioactive compounds produced during fermentation. Therefore, we compared these compounds via in vitro and ex vivo platelet aggregation assays by using standard light transmission aggregometry and ex vivo granule secretions from rat platelets. We found that fermented preparations exerted more potent and significant inhibition of platelet aggregation both in vitro and ex vivo. Likewise, ATP release from dense granules of platelets was also significantly inhibited in fermented preparation-treated rat platelets compared to that in non-fermented preparation-treated ones. We concluded that fermented preparations exerted more potent effects on platelet function both in vitro and ex vivo, possibly as a result of the increased bioavailability of active compounds produced during fermentation. We therefore suggest that fermented products may be potent therapeutics against platelet-related CVDs and can be used as antiplatelet and antithrombotic agents.

Variability of Platelet Reactivity on Antiplatelet Therapy in Neurointervention Procedure

  • Yi, Ho Jun;Hwang, Gyojun;Lee, Byoung Hun
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.3-9
    • /
    • 2019
  • As more intracranial aneurysms and other cerebrovascular pathologies are treated with neurointervention procedure, thromboembolic events that frequently lead to serious neurological deficit or fatal outcomes are increasing. In order to prevent the thromboembolic events, antiplatelet therapy is used in most procedures including coil embolization, stenting, and flow diversion. However, because of variable individual pharmacodynamics responses to antiplatelet drugs, especially clopidogrel, it is difficult for clinicians to select the adequate antiplatelet regimen and its optimal dose. This article reviews the neurointervention literature related to antiplatelet therapy and suggests a strategy for tailoring antiplatelet therapy in individual patients undergoing neurointervention based on the results of platelet function testing.