• Title/Summary/Keyword: antioxidative stress

Search Result 466, Processing Time 0.024 seconds

Oxidative Stress in Rice (Oryza sativa L.) Seedlings Induced by Flooding

  • Lee, Keun Pyo;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.159-162
    • /
    • 2001
  • Plant stress incurred by flooding was studied in terms of oxidative stress, using greened rice seedlings subjected to a complete submergence followed by re-exposure to air under illumination ($30W/m^2$). It appeared that shoot tissues of the seedlings suffered oxygen deficiency during the flooding treatment, pertinent to the general concept. Interestingly enough, however, membrane peroxidation in shoots was enhanced by the submergence, as assessed by the content of 2-thiobarbituric acid-reactive substances (TBARS), and the re-aeration resulted in a rapid reduction of TBARS content. Such pattern of response was also seen in the change in the steady state level of $H_2O_2$. In contrast, superoxide dismutase and glutathione reductase that are involved in the detoxifying processes of superoxide in plant cells were significantly activated only during the re-aeration. These results allowed us to suggest the followings as a working hypothesis. Photorespiration-linked production of $H_2O_2$ may largely contribute to the increase in $H_2O_2$ level as well as TBARS production in shoots during the submergence. An abrupt re-supply of $CO_2$ by the re-aeration brings the photosynthetic apparatus back to full operation, suppressing photorespiration and probably causing a momentary, excess formation of superoxide and its dismutation product through side reaction, which gives rise to activating substrate-inducible antioxidative enzymes.

  • PDF

Protective Activity of Seolitae Chungkukjang Added with Green Tea against Cellular Oxidative Stress induced by AAPH

  • Park, Hyun-Young;Lee, Hee-Seob;Cho, Eun-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The protective activity of seolitae chungkukjang added with green tea against oxidative stress was investigated under the cellular systems using LLC-$PK_1$ cells. The treatment of 2,2'-azobis(2-aminopropane) dihydrochloride (AAPH) showed increase in lipid peroxidation, and decrease in endogenous antioxidant enzymes activity and cell viability. However, the methanol extract of seolitae chungkukjang inhibited lipid peroxidation by 58.3%, and increased cell viability up to more than 60%. In addition, it enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. Seolitae chungkukjang improved oxidative stress-induced cellular injury through the radical scavenging activities. In particular, the addition of green tea in seolitae chungkukjang showed stronger effect against oxidative stress induced by AAPH. The more addition of green tea resulted in the greater antioxidative effect through elevation in activities of SOD and GSH-Px, and inhibition of lipid peroxidation, eventually leading to increase in cell viability. Theses results suggested that seolitae chungkukjang added with green tea have protective effects from cellular oxidative damage and could be considered as an application for the development of chungkukjang with functionality.

Oxidative Stress and Antioxidant Status during Transition Period in Dairy Cows

  • Sharma, N.;Singh, N.K.;Singh, O.P.;Pandey, V.;Verma, P.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.479-484
    • /
    • 2011
  • The study was conducted on 20 Holstein X Sahiwal cross bred dairy cows, with an average milk production of $2,752{\pm}113.79$ liters in $284{\pm}5.75$ days during a single lactation, that were divided in to two groups of 10 animals. We investigated the oxidative stress and antioxidant status during the transition period in dairy cows. In this study, plasma level of MDA was considered as an indicator of lipid peroxidation and SOD, catalase, GSH and GSHPx as antioxidants. The lipid peroxidation was significantly (p<0.001) higher in cows during early lactation as compared to the cows in advanced pregnancy. A significant positive correlation (r = +0.831, p<0.01) was determined between MDA and catalase in early lactating cows. In early lactating cows, blood glutathione was significantly lower than in advanced pregnant cows. However, early lactating cows showed non-significant negative correlation for all antioxidant enzymes with lipid peroxidation. In conclusion, dairy cows seemed to have more oxidative stress and low antioxidant defense during early lactation or just after parturition than advanced pregnant cows, and this appears to be the reason for their increased susceptibility to production diseases (e.g. mastitis, metritis, retention of fetal membranes etc.) and other health problems.

Hepatoprotective Effect of Stamen Extracts of Mesua ferrea L. against Oxidative Stress induced by $CCl_4$ in Liver Slice Culture Model

  • Rajopadhye, Anagha A.;Upadhye, Anuradha S.
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.76-82
    • /
    • 2012
  • Stamens of Mesua ferrea L. are a well-known herbal drug used in Indian System of Traditional Medicine to treat various diseases. The claimed activity of this plant part is necessitated to investigate antioxidant and hepatoprotective activity. Authenticated plant sample was extracted with hexane, ethanol (EtOH) and water (aq.) using ASE 100 accelerated solvent extractor. Antioxidant activity was evaluated by means of different in vitro assays. Hepatoprotective effect was investigated on carbon tetrachloride induced oxidative stress in liver slice culture model. Cytotoxic marker lactate dehydrogenase (LDH) released in culture medium and the activity of lipid peroxidation along with antioxidant enzymes (AOEs) namely superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were estimated. Hexane and EtOH extracts were significantly inhibited DPPH, NO, SOD and $ABTS^+$ radical in dose dependent manner. The trade of phenol content was: aq. extract < hexane extract < EtOH extract. A significant correlation was shown by total phenol content and free radical scavenging activity of extracts. The culture system treated with hexane extract, EtOH extract or ascorbic acid exhibited significant depletion in LDH, lipid peroxidation, antioxidative enzymes SOD, CAT and GR. Hexane extract and EtOH extracts of stamen of M. ferrea protected liver slice culture cells by alleviating oxidative stress induced damage to liver cells.

Manipulation of Antioxidative Mechanism in Chloroplasts

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.79-84
    • /
    • 1999
  • Oxidative stress is one of the major environmental stresses to plants. Reactive oxygen species (ROS) generated during metabolic processes damage cellular functions and consequently lead to cell death. Fortunately plants have in vivo defense system by which the ROS is scavenged by enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). In attempts to understand the protection mechanism of plant against oxidative stress, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plansts thet expressed both SOD and APX in chloroplast using Agrobacterum-mediated transformation and evaluated their protection capabilities against methyl viologen (MV, paraquat) -mediated oxidative damage. Three double transformants (CAI, CA2, and CA3) expressed the chimeric CuZnSOD and chimeric APX in chloroplast, and one transformant (AM) expressed the chimeric APX and chimeric MnSOD in chloroplast. In addition, we obtained three lines of transformants (C/Al, C/A2, and A/C) that expressed the APX and SOD than control plants, and more resistant to oxidative stress caused by MV. TRansformants (C/A and A/C) overexpressing MnSOD, CuZnSOD and APX at the same time showed the highest resistance to MV-mediated oxidative stress among the transformants.

  • PDF

Effects of Defatted Seasme Flour on Oxidative Stress Induced by Ethanol-feeding in Rats (식이 참깨탈지박이 에탄올을 공급한 쥐에 유도된 산화 스트레스 억제효과)

  • 강명화;민관식;류수노;방진기;이봉호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.907-911
    • /
    • 1999
  • To evaluate the effect of defatted sesame flour(DSF) on the oxidative stress of ethanol feeding in rats, Wistar male rats were divided into 4 groups of control, ethanol, DSF and DSF ethanol. Each group was sacrificed after feeding for 4 weeks and was examined by measuring the formation of 2 thiobarbituric acid reactive substance(TBARS), total cholesterol(TC) in serum, redox glutathione S transferase(GST) enzyme activity and the contents of glutathione(GSH) in the liver. The formation of TBARS in the liver after ethanol feeding was significantly increased comparing to the control, but the levels were significantly decreased by the DSF as compared to the ethanol feeding group(p<0.05). When compared to fed control diet, we found that serum TC levels were significantly lower in the DSF fed group than control group (p<0.05). The activity of hepatic GST was significantly increased by DSF as compared to the control and was decreased by ethanol feeding. On the other hand, the hepatic contents of GSH were unaffected by DSF feeding. Our findings suggest that feeding DSF may inhibit ethanol induced oxidative stress may be due to the stimulation of antioxidative activity by sesaminol glucosides in DSF.

  • PDF

Suppressive Effect of Chlorella Methanol Extract on Oxidative Stress and NFkB Activation in RAW 264.7 Macrophages

  • Park, Ji-Young;Lee, Hyo-Sun;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2003
  • This study was designed to investigate whether a methanol extract of chlorella can suppress oxidative stress and nuclear factor kB (NFkB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. Treatment of RAW 264.7 cells with chlorella methanol extract (25, 50, and 100 $\mu$g/mL) significantly reduced LPS-stimulated nitric oxide production in a dose-dependent manner. Treatments with chlorella methanol extract at all concentrations also reduced thiobarbituric acid-reactive substances accumulation and enhanced glutathione level at 50 and 100 $\mu$g/mL levels. The specific DNA binding activities of NFkB on nuclear extracts in cells treated with 50 $\mu$g/mL and 100 $\mu$g/mL chlorella methanol extracts were significantly suppressed. These results suggest that chlorella methanol extract has mild antioxidative activity and the ability to suppress intracellular oxidative stress and NFkB activation.

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • LEE Haeng-Soon;KIM Kee-Yeun;KWON Suk-Yoon;KWAK Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21s1 century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF