• Title/Summary/Keyword: antioxidative enzymes.

Search Result 298, Processing Time 0.025 seconds

Antioxidant Property of Vitamin C - in Comparison with Vitamin B1

  • Seo, Du-Kyo;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.117-123
    • /
    • 2005
  • Various aspects of antioxidant activity in vitamin C were evaluated in this study. Relatively high level of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was detected in vitamin C, but not in non-antioxidative vitamin, vitamin B1. Vitamin C also reduced the production of lipid peroxidation in Chinese hamster lung fibroblast (V79-4) cells with $IC_{50}$ value of $4{\mu}g/ml$. Vitamin B1 showed comparable reduction in lipid peroxidation products ($IC_{50}$ value was about $10{\mu}g/ml$). It was shown that vitamin C also dose-dependently enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in V79-4 cells, and these effects were not observed in vitamin Bl-treated cells. Our data suggest that well-known antioxidant vitamin C involved in direct activation of SOD, CAT and GPX.

Effects of Antioxidants on the Photosynsthesis and Carbohydrates/Saponin Contents in Panax ginseng Leaves (인삼잎의 광합성과 탄수화물.사포닌 함량에 미치는 항산화제의 효과)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 1994
  • We studied the folilar wiping effects of antioxidants (ascorbate, glutathione and sodium azide), which effectively inhibited the chlorophyll bleaching or completely recorved the early stage of photosynthesis of Panax ginseng C.A. Meyer, on photosynthesis, stomatal resistance, free sugar, starch, and total saponin contents of ginseng under the excess light intensity (45 kLux) during 6 days. Ascorbate and glutathione, endogenous antioxidant, recovered photosynehtsis and stomatal resistance, and reduced the photoinhibition by the excess light intensity (45 kLux) on free sugar, starch and total saponin contents. But sodium azide, exogenous $^{1}O_2$ quencher, showed negative effect. Therefore, we assumed that carbohydrates and saponin metabolisms of ginseng by antioxidants (ascorbate, glutathione) were normal. For the reduction of inhibition by excess light in ginseng a program for the higher activation of antioxidants and antioxidative enzymes in ginseng leaf will be desirable. Key words Antioxidants, ascorbate, glutathione, Photoinhibition, ginseng.

  • PDF

Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action

  • Kim, Kwangmi
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Abnormal changes in skin color induce significant cosmetic problems and affect quality of life. There are two groups of abnormal change in skin color; hyperpigmentation and hypopigmentation. Hyperpigmentation, darkening skin color by excessive pigmentation, is a major concern for Asian people with yellowe-brown skin. A variety of hypopigmenting agents have been used, but treating the hyperpigmented condition is still challenging and the results are often discouraging. Panax ginseng has been used traditionally in eastern Asia to treat various diseases, due to its immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Recently, several reports have shown that extract, powder, or some constituents of ginseng could inhibit melanogenesis in vivo or in vitro. The underlying mechanisms of antimelanogenic properties in ginseng or its components include the direct inhibition of key enzymes of melanogenesis, inhibition of transcription factors or signaling pathways involved in melanogenesis, decreasing production of inducers of melanogenesis, and enhancing production of antimelanogenic factor. Although there still remain some controversial issues surrounding the antimelanogenic activity of ginseng, especially in its effect on production of proinflammatory cytokines and nitric oxide, these recent findings suggest that ginseng and its constituents might be potential candidates for novel skin whitening agents.

Effects of Vitamin E and Selenium on the Antioxidative Defense System in Streptozotocin-induced Diabetic Rats (Vitamin E와 Selenium이 Streptozotocin 유발 당뇨쥐의 항산화계에 미치는 영향)

  • 이순재
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 1996
  • The purpose of this study was to investigate the effect of vitamin E and selenium on the antioxidative defense mechanism in the liver of streptozotocin(STZ)-induced diabetic rats. Sprague-Dawley male rats(120$\pm$10gm) were randomly assigned to one control and five STZ-diabetic groups. Diabetic groups were classified to STZ-0E (vitamin E free diet), STZ-40E(40mg vitamin E/kg of diet), STZ-400E(400mg vitamin E/kg of diet), STZ-S(0.5ppm Se/kg of diet) and STZ-400ES(400mg vitamin E and 0.5ppm Se/kg of diet) according to the level of vitamin E and selenium supplementation. Diabetes was experimentally induced by intravenous adminstration of 55mg/kg of STZ in citrate buffer(pH 4.3) after 4-weeks feedng of six experimental diets. Animals were sacrificed at the 4th day of diabetic states. Activities of the serum glutamic oxaloacetate transaminase(GOT) and the glutaminc pyruvate transaminase(GPT) in STZ-0E, STZ-40E and STZ-S rats were higher than those of control. Liver xanthine oxidase activities were similar to serum GOT and GPT. Liver superoxide dismutase(SOD) activities were higher in STZ-0E and STZ-40E groups by 33%, 22%, respectively than that of control. Glutathione S-transferase(GST) activities of liver were similar to GSH-Px activities. The contents of vitamin E in liver tissue were significantly lower STZ-0E, STZ-40E and STZ-S groups by 50%, 36%, 45% than that of control. Reduced glutathione(GSH) contents of liver were lower STZ-0E, STZ-40E, STZ-400E, STZ-S and STZ-400ES groups by 57%, 51%, 19%, 18%, 12% than that of control. Lipid peroxide values (LPO) in liver were higher 5.6, 2.3 and 2.3 times in STZ-0E, STZ-40E and STZ-S group than that of control. The present results indicate that STZ-induced diabetic rats are more sensitive to oxidative stress, leading to the acceleration of lipid peroxidation process, which can be more accelerated by feeding the low level of dietary vitamin E. In the coincident supplementation of high dietary vitamin E and selenium antioxidative enzymes activities and physiolosical antioxidants were increased more than those of the separate supplementation of vitamin E or selenium. Therefore, dietary vitamin E and selenium reduced peroxidative damage of tissue, promoting antioxidative defense mechanism against lipid peroxidation by diabetes.

  • PDF

Effect of Water and Ethanol Extracts of Persimmon Leaf and Green Tea Different Conditions on Lipid Metabolism and Antioxidative Capacity in 12-month-old Rats (추출 조건을 달리한 감잎과 녹차의 물 및 에탄올 추출물이 노령쥐의 지방대사와 항산화능에 미치는 영향)

  • 김성경;이혜진;김미경
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.499-512
    • /
    • 2001
  • This study was performed to investigate effects of dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in 12-month-old rats. Fifty-four male Sprague-Dawley rats weighing 542$\pm$4.5g were blocked into groups according to their body weight and were raised for four weeks with the diets containing 5%(w/w) dried leaf powders of persimmon(Diospyros kaki Thunb) and green tea(Camellia Sinensis O. Ktze), water or 75% and 95% ethanol extracts from same amount of each dried tea powder. Food intake was not significantly different among all groups, but weight gain of green tea powder group was significantly lower than that of control group. Plasma and liver lipid levels of all the tea diet groups were lower than those of control group. Especially, 75% ethanol extract of persimmon leaf decreased total lipid and triglyceride concentrations in plasma and 95% ethanol extract of persimmon leaf decreased liver total lipid level. However, there was no difference between 75% ethanol extracts groups and 95% ethanol extracts groups in lipid metabolism. Superoxide dismutase(SOD) and catalase activities in erythrocyte were remarkably increased by all the green tea diets. SOD, catalase and glutathione peroxidase activities in liver were increased by the feeding of ethanol extracts from green tea and persimmon leaf powder. Liver xanthine oxidase activity was not different among all groups. Plasma Thiobarbirutic acid reactive substance(TBARS) concentrations of all the green tea diet groups were significantly low. It was thought that high flavonoids in green tea inhibited plasma lipid peroxidation by promoting SOD, catalase activities in erythrocyte. 95% ethanol extract of persimmon leaf also inhibited plasma lipid peroxidation by high vitamin E and beta-carotene. Persimmon leaf powder decreased liver TBARS concentration by vitamin E, betacarotene and vitamin C and by increasing activities of antioxidative enzymes with flavonoids. In conclusion, dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea were effective in lowering lipid levels and inhibiting lipid peroxidation in 12-month-old rats. Above all, ethanol extracts of persimmon leaf decreased plasma and liver lipid levels and persimmon leaf powder effectively inhibited liver lipid peroxidation. Extracts of green tea leaf inhibited plasma lipid peroxidation. In lowering lipid levels and inhibiting lipid peroxidation, ethanol extracts were more effective than water extracts, but there was no difference between 75% ethanol extracts and 95% ethanol extracts in lipid metabolism. (Korean J Nutrition 34(5) : 499~512, 2001)

  • PDF

In vitro Biological Activities of Anthocyanin Crude Extracts from Black Soybean (In vitro 실험에서 검정콩 안토시아닌 조추출물의 효능 분석)

  • Lee, Hye-Jeong;Do, Wan-Nyeo;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • This study was carried out to investigate the antioxidative and anti-inflammatory activity of crude anthocyanin compounds extracted from black soybean. The crude anthocyanin compounds were extracted with 80% methanol and concentrated to powder. The most abundant compound isolated from the extract was C3G(cyanidin-3-glucoside). The superoxide dismutase (SOD) assay was conducted to assess the antioxidative activity of the crude extract. SOD, which catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen, is one of the most important antioxidative enzymes. The black soybean anthocyanin extracts inhibited more than 90% of the superoxide radical at a concentration of 0.1% and 100% at a concentration of 0.5%, indicating that this extract displayed excellent antioxidative activity. To assess the anti-inflammatory activity of the extract, a NO(Nitric oxide) production assay in RAW 264.7 cells was performed. NO is an important physiological messenger and effector molecule in many biological systems, including immunological, neuronal and cardiovascular tissues. In this assay, the anthocyanin extracts showed a high anti-inflammatory potential, where the inhibitory potency for NO production was similar to the positive control, particularly for EGCG(epigallocatechin-3-gallate), which is known to have excellent anti-inflammatory activity. Thus, it can be concluded that the anthocyanin extracts from black soybean have distinctive pharmaceutical activities and may be used as an excellent source materials to supplement the health benefits of various food products.

Antioxidative and Anti-inflammatory Activities of Ardisia arborescens Ethanol Extract (Ardisia arborescens 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.713-720
    • /
    • 2014
  • In this study, the antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract (AAEE) were evaluated using in vitro assays and a cell culture model system. AAEE exhibited potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid, which was used as a positive control. Moreover, AAEE effectively suppressed lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, AAEE induced the expression of antioxidative enzymes, heme oxygenase 1 (HO-1), and thioredoxin reductase 1 (TrxR1), in addition to their upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The upstream signaling pathways of mitogen-activated protein kinases (MAPKs) might regulate the modulation of HO-1, TrxR1, and Nrf2 expression. On the other hand, AAEE inhibited LPS-induced nitric oxide (NO) formation, without cytotoxicity. Suppression of NO formation was the result of AEEE-induced down-regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by AAEE might be modulated by their upstream transcription factor, nuclear factor (NF)-${\kappa}B$, and activator protein (AP)-1 pathways. Taken together, these results provide important new insights into the antioxidative and anti-inflammatory activities of A. arborescens. AAAEE might represent a promising material in the field of nutraceuticals.

In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

  • Hossen, Muhammad Jahangir;Hong, Yong Deog;Baek, Kwang-Soo;Yoo, Sulgi;Hong, Yo Han;Kim, Ji Hye;Lee, Jeong-Oog;Kim, Donghyun;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-${\beta}$ (TRIF), to measure the activation of nuclear factor (NF)-${\kappa}B$ and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-${\beta}$ and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-${\kappa}B$ (p50 and p65). This extract inhibited the upregulation of NF-${\kappa}B$-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of ${\kappa}B$ ($I{\kappa}B{\alpha}$) kinase ($IKK{\beta}$), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-${\kappa}B$ pathway by blocking $IKK{\beta}$ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/$IKK{\beta}$/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of $IKK{\beta}$ and TBK1, which mediate transcriptional regulation of NF-${\kappa}B$ and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.

The Effect of UV Blocking Lens on the Denaturation of Antioxidative Enzymes Induced by UV-A (UV-A로 유발된 항산화효소의 변성에 대한 자외선 차단렌즈의 작용)

  • Park, Chung-Seo;Park, Young-Min;Kim, Dae-Hyun;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.97-103
    • /
    • 2007
  • This study was investigated to find the proper UV-A blocking percentage that could protect the denaturation of catalase and superoxide dismutase (SOD), antioxidative enzymes in eye, induced by UV-A. Catalase or SOD were irradiated at 365 nm for 1, 3, 6, 24, 96 hr and the extent of denaturation was evalutated by polyacrylamide gel electrophoresis. Furthermore, it was investigated whether blocking of UV-A by 20, 50, 80 and 99% eyeglass lens could protect the denaturation of catalase and SOD or not. Catalase became to denature when catalase were irradiated by UV-A for more than 3 hours. However, the denaturation of SOD was induced by more than 6 hours irradiation. The denaturation of catalase induced by irradiation for 3 hr could be perfectly protected by 99% UV-A blocking lens. But, when the irradiation time became longer than 3 hr or the blocking percentage of lens were lower than 99%, the denaturation of catalase was not perfectly protected but partially protected. Although 50% UV-A blocking lens had partial protecting effects, lenses having 80 or 99% UV-A blocking effect could perfectly prevent the denaturation of SOD induced by 96 hr irradiation.

  • PDF

Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice

  • Hong, Sun Hee;Kim, Mijeong;Woo, Minji;Song, Yeong Ok
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.365-372
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik, was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. MATERIALS/METHODS: Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. RESULTS: The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group (P < 0.05). In addition, nuclear factor-kappaB (NF-${\kappa}B$) expression in the GBRD group was significantly lower than that in the RCD group. CONCLUSIONS: GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and NF-${\kappa}B$ downregulation. These effects were significantly higher than those of RCD.