• Title/Summary/Keyword: antioxidant protein

Search Result 1,577, Processing Time 0.028 seconds

Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli

  • Wu, Yanyan;Ma, Yongkai;Li, Laihao;Yang, Xianqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • An antioxidant peptide derived from Pinctada fucata meat using an Alcalase2.4L enzymatic hydrolysis method (named AOP) and identified by LC-TOF-MS has promising clinical potential for generating cosmetic products that protect skin from sunshine. To date, there have been few published studies investigating the structure-activity relationship in these peptides. To prepare antioxidant peptides better and improve their stability, the design and expression of an antioxidant peptide from Pinctada fucata (named DSAOP) was studied. The peptide contains a common precursor of an expression vector containing an ${\alpha}$-helix tandemly linked according to the BamHI restriction sites. The DNA fragments encoding DSAOP were synthesized and subcloned into the expression vector pET-30a (+), and the peptide was expressed mostly as soluble protein in recombinant Escherichia coli. Meanwhile, the DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity of DSAOP $IC_{50}$ values were $0.136{\pm}0.006$, $0.625{\pm}0.025$, and $0.306{\pm}0.015mg/ml$, respectively, with 2-fold higher DPPH radical scavenging activity compared with chemosynthesized AOP (p < 0.05), as well as higher superoxide radical scavenging activity compared with natural AOP (p < 0.05). This preparation method was at the international advanced level. Furthermore, pilot-scale production results showed that DSAOP was expressed successfully in fermenter cultures, which indicated that the design strategy and expression methods would be useful for obtaining substantial amounts of stable peptides at low costs. These results showed that DSAOP produced with recombinant Escherichia coli could be useful in cosmetic skin care products, health foods, and pharmaceuticals.

Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

  • Kwak, Chung Shil;Son, Dahee;Chung, Young-Shin;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.569-578
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS: Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS: Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At $100{\mu}g/mL$, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS: Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health.

Antioxidant and Antimicrobial Activities of The Extracts from Native Camellia japonica in Korea (국내 자생 동백나무(Camellia japonica L.) 추출물의 항산화 및 항미생물 활성)

  • 이숙영;김선민;황은주;표병식
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.314-322
    • /
    • 2004
  • This research has been undertaken to increase availiability of native Camellia japonica leaf and flower in Korea as a edible-medicinal resource. Chemical compositions, antioxidant and antimicrobial activities in different parts of camellia were investigated. Crude protein contained the highest in young leaves(14.22%) but less than 10% in different parts. The contents of crude fat and crude ash were 60.48% in seeds and 5.16% in mature leaves, respectively. Methanol extract of young leaf, flower, and flower bud in camellia showed strong antioxidant activity compared with different parts. Also, antioxidant activity of these was higher than that of BHT, but weaker than that of VtC. Antioxidant activity of various parts in camellia were in order of young leaf &gt; flower bud &gt; flower &gt; mature leaf &gt; stem &gt; bark. Extracts of mature leaf and bark had a remarkable antibacterial activity(0 CFU/$m\ell$) on Bacillus subtilis. The young leaf extract displayed effective growth inhibition against B. subtilis, Candida albicans, and Trichosporon beigelii.

The Study on Antioxidant and Anti-inflammatory Effects of Taraxacum platycarpum H. Dahlstedt, Lonicera japonica Thunberg and Leonurus japonicus Houtt. Complex (포공영, 금은화, 익모초 혼합물의 항산화 및 항염증 효과에 관한 연구)

  • Sung Sin Huh;Young Il Kim
    • The Journal of Korean Medicine
    • /
    • v.44 no.3
    • /
    • pp.10-28
    • /
    • 2023
  • Objectives: This study was designed to experiment with the antioxidant and anti-inflammatory effects of Taraxacum platycarpum H. Dahlstedt, Lonicera japonica Thunberg, and Leonurus japonicus Houtt. complex (TLL) in LPS-induced RAW264.7 cell. Methods: The antioxidant activity of TLL was measured by FRAP assay, DPPH radical scavenging activity, ABTS radical scavenging activity. Total polyphenol and flavonoid contents of TLL were measured by using standard methods. The anti-inflammatory effects of TLL were measured by NO production, biomarker production (PGE2, IL-1β, IL-6, TNF-α), mRNA expression level (iNOS, COX-2, IL-1β, IL-6, TNF-α) and protein expression level (ERK, JNK, p38). Results: Total polyphenol and flavonoid contents in TLL were 58.03±1.02 mg of Gallic acid equivalents (GAE)/g and 16.58±0.60 mg of Quercetin equivalents (QE)/g respectively. In FRAP assay, DPPH and ABTS radical scavenging activity, a concentration-dependent increase in TLL was observed. To explore antioxidant and anti-inflammatory effects of TLL, RAW 264.7 cells were treated with TLL and LPS for 24 hours. Cell viability of RAW 264.7 cells were measured by adding EZ-Cytox, It was remarkably increased at 50, 100, 200 ㎍/㎖ concentrations of TLL. NO, ROS, iNOS, IL-1β, IL-6, TNF-α, ERK, JNK and p38 were remarkably decreased at 50, 100, 200 ㎍/㎖ concentrations of TLL compared to the control group. PGE2 and COX-2 were remarkably decreased at 100, 200 ㎍/㎖ concentrations Conclusion: These results suggest that TLL complex has antioxidant and anti-inflammatory effects.

Effects of gold and green kiwifruit juices on the physicochemical properties and tenderness of pork loin and antioxidant activity during incubation (24 h) in a pork model system

  • Haeun Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.908-917
    • /
    • 2024
  • Objective: Although pork loins is not a tough meat, they need to develop meat products with a soft texture for the elderly. This study focused on the physicochemical properties and tenderness characteristics of pork loin injected with green kiwifruit juice (GRJ) and gold kiwifruit juice (GOJ) during various incubation times. In addition, the antioxidant activities of hydrolysate derived from the hydrolysis of pork loin by kiwifruit juice protease were evaluated. Methods: The pork loin was injected with 10% and 20% GRJ and GOJ, under various incubation times (0, 4, 8, and 24 h). Then, the physicochemical properties and tenderness of pork loins were measured. 2,2- diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power were conducted to determine hydrolysate's antioxidant activities derived from pork loin's hydrolysis by kiwifruit juice protease. Results: GRJ had greater tenderizing ability than GOJ, even at the 10% addition. When kiwifruit juice was injected into pork loin, the tenderness increased with increasing incubation time. This was confirmed by the decrease in intensity of the myosin heavy chain (MHC) band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In particular, the MHC band decreased at 8 h for both 10% GRJ and 20% GOJ and at 4 h for 20% GRJ alone. The highest myofibril fragmentation index and peptide solubility were observed in pork loin treated with 20% GRJ compared to the other treatments during incubation. The 10% GRJ and 20% GOJ treatments showed similar levels of antioxidant activity of the protein hydrolysates in pork loin, and 20% GRJ showed the highest activity among the treatments. Conclusion: Kiwifruit juice had protease activity, and GRJ was more useful for tenderizing meat products than GOJ. Thus, GRJ at 10% could be a potential agent to tenderize and enrich the natural antioxidant activity through the proteolysis of pork loin.

Comparative Response of Callus and Seedling of Jatropha curcas L. to Salinity Stress

  • Kumar, Nitish;Kaur, Meenakshi;Pamidimarri, D.V.N. Sudheer;Boricha, Girish;Reddy, Muppala P.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2008
  • Jatropha curcas L. is an oil bearing species with many uses and considerable economic potential as a biofuel crop. Salt stress effect on growth, ion accumulation, contents of protein, proline and antioxidant enzymes activity was determined in callus and seedling to understand the salt tolerance of the species. Exposure of callus and seedling to salt stress reduced growth in a concentration dependent manner. Under salt stress Na content increased significantly in both callus and seedling whereas, differential accumulation in the contents of K, Ca, and Mg was observed in callus and seedling. Soluble protein content differed significantly in callus as compared to seedling, however proline accumulation remained more or less constant with treatments. The proline concentration was ~2 to 3 times more in callus than in seedling. Salt stress induced qualitative and quantitative differences in superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7) in callus and seedling. Salt induced changes of the recorded parameters were discussed in relation to salinity tolerance.

  • PDF

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee;Kim, Eun-Ju;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.353-357
    • /
    • 2002
  • Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

Role of ${\alpha}$-tocopherol in cellular signaling: ${\alpha}$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation

  • Hyun, Tae-Kyung;Kumar, Kundan;Rao, Kudupudi Prabhakara;Sinha, Alok Krishna;Roitsch, Thomas
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • Tocopherols belong to the plant-derived poly phenolic compounds known for antioxidant functions in plants and animals. Activation of mitogen-activated protein kinases (MAPK) is a common reaction of plant cells in defense-related signal transduction pathways. We report a novel non-antioxidant function of ${\alpha}$-tocopherol in higher plants linking the physiological role of tocopherol with stress signalling pathways. Pre-incubation of a low concentration of $50{\mu}M$ ${\alpha}$-tocopherol negatively interferes with MAPK activation in elicitor-treated tobacco BY2 suspension culture cells and wounded tobacco leaves, whereas pre-incubated BY2 cells with ${\alpha}$-tocopherol phosphate did not show the inhibitory effect on stimuli-induced MAPK activation. The decreased MAPK activity was neither due to a direct inhibitory effect of ${\alpha}$-tocopherol nor due to the induction of an inhibitory or inactivating activity directly affecting MAPK activity. The data support that the target of ${\alpha}$-tocopherol negatively regulates an upstream component of the signaling pathways that leads to stress dependent MAPK activation.

Effect of Aerva lanata against oxalate mediated free radical toxicity in urolithiasis

  • Begum, Vava Mohaideen Hazeena;Mahesh, Ramalingam;Ramesh, Thiyagarajan;Soundararajan, Periasamy
    • Advances in Traditional Medicine
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • This study was undertaken to evaluate the antioxidant potential of A. lanata on oxalate mediated free radical toxicity in ethylene glycol induced calcium oxalate urolithic rats. Calcium oxalate (CaOX) stone was induced by 0.75% ethylene glycol in drinking water for 28 days. From $29^{th}$ day onwards, the CaOX urolithic rats were treated with A. lanata aqueous suspension (2,000 mg/kg body weight/dose/day) orally for another 28 days. At the end of experimental periods the animals were sacrificed, samples were collected and analyzed the lipid peroxidation product, protein oxidation product, enzymatic and non-enzymatic antioxidants in normal and experimental groups. Lipid peroxidation and protein oxidation products were significantly elevated while enzymatic and non-enzymatic antioxidant levels were significantly decreased in ethylene glycol induced CaOX urolithic rats when compared with control rats. The above alterations were reverted to near control in rats treated with aqueous suspension of A. lanata. This study suggests that A. lanata could prevent the free radical formation from calcium oxalate urolithiasis in rats and protecting the renal cells from oxidative injury.

Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

  • Noh, Dong Ouk;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of ${\alpha}$-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of ${\alpha}$-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and ${\alpha}$-amino nitrogen content after 24 hhydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products.